Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,12 @@ import numpy as np
|
|
6 |
import scipy.io.wavfile
|
7 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
|
9 |
-
# β
1οΈβ£ Use "whisper-
|
10 |
device = "cpu"
|
11 |
torch_dtype = torch.float32
|
12 |
-
MODEL_NAME = "openai/whisper-
|
13 |
|
14 |
-
# β
2οΈβ£ Load Whisper Model on CPU
|
15 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
16 |
MODEL_NAME, torch_dtype=torch_dtype, use_safetensors=True
|
17 |
)
|
@@ -29,10 +29,10 @@ pipe = pipeline(
|
|
29 |
model=model,
|
30 |
tokenizer=processor.tokenizer,
|
31 |
feature_extractor=processor.feature_extractor,
|
32 |
-
chunk_length_s=
|
33 |
torch_dtype=torch_dtype,
|
34 |
device=device,
|
35 |
-
generate_kwargs={"num_beams": 5, "language": "en"}, # β
Beam search
|
36 |
)
|
37 |
|
38 |
# β
5οΈβ£ Real-Time Streaming Transcription (Microphone)
|
@@ -48,7 +48,7 @@ def stream_transcribe(stream, new_chunk):
|
|
48 |
y = y.astype(np.float32)
|
49 |
y /= np.max(np.abs(y))
|
50 |
|
51 |
-
# β
Resample audio using
|
52 |
y_tensor = torch.tensor(y)
|
53 |
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
54 |
|
@@ -96,8 +96,8 @@ def clear():
|
|
96 |
|
97 |
# β
8οΈβ£ Gradio Interface (Microphone Streaming)
|
98 |
with gr.Blocks() as microphone:
|
99 |
-
gr.Markdown(f"# Whisper
|
100 |
-
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for
|
101 |
|
102 |
with gr.Row():
|
103 |
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
|
|
6 |
import scipy.io.wavfile
|
7 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
|
9 |
+
# β
1οΈβ£ Use "whisper-medium" for the best balance of speed & accuracy
|
10 |
device = "cpu"
|
11 |
torch_dtype = torch.float32
|
12 |
+
MODEL_NAME = "openai/whisper-medium"
|
13 |
|
14 |
+
# β
2οΈβ£ Load Whisper Model on CPU
|
15 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
16 |
MODEL_NAME, torch_dtype=torch_dtype, use_safetensors=True
|
17 |
)
|
|
|
29 |
model=model,
|
30 |
tokenizer=processor.tokenizer,
|
31 |
feature_extractor=processor.feature_extractor,
|
32 |
+
chunk_length_s=10, # β
Longer chunks for better accuracy
|
33 |
torch_dtype=torch_dtype,
|
34 |
device=device,
|
35 |
+
generate_kwargs={"num_beams": 5, "language": "en", "temperature": 0.1}, # β
Beam search + English
|
36 |
)
|
37 |
|
38 |
# β
5οΈβ£ Real-Time Streaming Transcription (Microphone)
|
|
|
48 |
y = y.astype(np.float32)
|
49 |
y /= np.max(np.abs(y))
|
50 |
|
51 |
+
# β
Resample audio to 16kHz using torchaudio
|
52 |
y_tensor = torch.tensor(y)
|
53 |
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
54 |
|
|
|
96 |
|
97 |
# β
8οΈβ£ Gradio Interface (Microphone Streaming)
|
98 |
with gr.Blocks() as microphone:
|
99 |
+
gr.Markdown(f"# Whisper Medium - High Accuracy Transcription (Optimized CPU) ποΈ")
|
100 |
+
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for best speech-to-text performance.")
|
101 |
|
102 |
with gr.Row():
|
103 |
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|