Update app.py
Browse files
app.py
CHANGED
@@ -4,39 +4,38 @@ import gradio as gr
|
|
4 |
import time
|
5 |
import numpy as np
|
6 |
import scipy.io.wavfile
|
7 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
|
9 |
-
# β
1οΈβ£
|
10 |
device = "cpu"
|
11 |
-
torch_dtype = torch.float32
|
12 |
-
MODEL_NAME = "openai/whisper-small"
|
13 |
|
14 |
-
# β
2οΈβ£
|
15 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
16 |
-
|
17 |
-
# β
3οΈβ£ Load Whisper Model on CPU with Optimized Settings
|
18 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
19 |
-
MODEL_NAME,
|
20 |
)
|
21 |
model.to(device)
|
22 |
|
23 |
-
# β
|
|
|
|
|
|
|
24 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
25 |
processor.feature_extractor.sampling_rate = 16000 # β
Set correct sampling rate
|
26 |
|
27 |
-
# β
5οΈβ£ Optimized Pipeline with Beam Search for Better Accuracy
|
28 |
pipe = pipeline(
|
29 |
task="automatic-speech-recognition",
|
30 |
model=model,
|
31 |
tokenizer=processor.tokenizer,
|
32 |
feature_extractor=processor.feature_extractor,
|
33 |
-
chunk_length_s=5, # β
|
34 |
torch_dtype=torch_dtype,
|
35 |
device=device,
|
36 |
generate_kwargs={"num_beams": 5, "language": "en"}, # β
Beam search for better accuracy
|
37 |
)
|
38 |
|
39 |
-
# β
|
40 |
def stream_transcribe(stream, new_chunk):
|
41 |
start_time = time.time()
|
42 |
try:
|
@@ -49,7 +48,7 @@ def stream_transcribe(stream, new_chunk):
|
|
49 |
y = y.astype(np.float32)
|
50 |
y /= np.max(np.abs(y))
|
51 |
|
52 |
-
# β
Resample audio
|
53 |
y_tensor = torch.tensor(y)
|
54 |
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
55 |
|
@@ -69,7 +68,7 @@ def stream_transcribe(stream, new_chunk):
|
|
69 |
print(f"Error: {e}")
|
70 |
return stream, str(e), "Error"
|
71 |
|
72 |
-
# β
|
73 |
def transcribe(inputs, previous_transcription):
|
74 |
start_time = time.time()
|
75 |
try:
|
@@ -91,11 +90,11 @@ def transcribe(inputs, previous_transcription):
|
|
91 |
print(f"Error: {e}")
|
92 |
return previous_transcription, "Error"
|
93 |
|
94 |
-
# β
|
95 |
def clear():
|
96 |
return ""
|
97 |
|
98 |
-
# β
|
99 |
with gr.Blocks() as microphone:
|
100 |
gr.Markdown(f"# Whisper Small - Real-Time Transcription (Optimized CPU) ποΈ")
|
101 |
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ultra-fast speech-to-text with better accuracy.")
|
@@ -115,7 +114,7 @@ with gr.Blocks() as microphone:
|
|
115 |
)
|
116 |
clear_button.click(clear, outputs=[output])
|
117 |
|
118 |
-
# β
|
119 |
with gr.Blocks() as file:
|
120 |
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
121 |
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for better transcription accuracy.")
|
@@ -132,10 +131,10 @@ with gr.Blocks() as file:
|
|
132 |
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
133 |
clear_button.click(clear, outputs=[output])
|
134 |
|
135 |
-
# β
|
136 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
137 |
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
138 |
|
139 |
-
# β
1οΈβ£
|
140 |
if __name__ == "__main__":
|
141 |
demo.launch()
|
|
|
4 |
import time
|
5 |
import numpy as np
|
6 |
import scipy.io.wavfile
|
7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
|
9 |
+
# β
1οΈβ£ Use "whisper-small" for better accuracy
|
10 |
device = "cpu"
|
11 |
+
torch_dtype = torch.float32
|
12 |
+
MODEL_NAME = "openai/whisper-small"
|
13 |
|
14 |
+
# β
2οΈβ£ Load Whisper Model on CPU (Removed bitsandbytes)
|
|
|
|
|
|
|
15 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
16 |
+
MODEL_NAME, torch_dtype=torch_dtype, use_safetensors=True
|
17 |
)
|
18 |
model.to(device)
|
19 |
|
20 |
+
# β
3οΈβ£ Speed up execution with torch.compile()
|
21 |
+
model = torch.compile(model) # β
Faster inference on CPU
|
22 |
+
|
23 |
+
# β
4οΈβ£ Load Processor & Pipeline
|
24 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
25 |
processor.feature_extractor.sampling_rate = 16000 # β
Set correct sampling rate
|
26 |
|
|
|
27 |
pipe = pipeline(
|
28 |
task="automatic-speech-recognition",
|
29 |
model=model,
|
30 |
tokenizer=processor.tokenizer,
|
31 |
feature_extractor=processor.feature_extractor,
|
32 |
+
chunk_length_s=5, # β
Better balance between speed & accuracy
|
33 |
torch_dtype=torch_dtype,
|
34 |
device=device,
|
35 |
generate_kwargs={"num_beams": 5, "language": "en"}, # β
Beam search for better accuracy
|
36 |
)
|
37 |
|
38 |
+
# β
5οΈβ£ Real-Time Streaming Transcription (Microphone)
|
39 |
def stream_transcribe(stream, new_chunk):
|
40 |
start_time = time.time()
|
41 |
try:
|
|
|
48 |
y = y.astype(np.float32)
|
49 |
y /= np.max(np.abs(y))
|
50 |
|
51 |
+
# β
Resample audio using optimized torchaudio method
|
52 |
y_tensor = torch.tensor(y)
|
53 |
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
54 |
|
|
|
68 |
print(f"Error: {e}")
|
69 |
return stream, str(e), "Error"
|
70 |
|
71 |
+
# β
6οΈβ£ Transcription for File Upload
|
72 |
def transcribe(inputs, previous_transcription):
|
73 |
start_time = time.time()
|
74 |
try:
|
|
|
90 |
print(f"Error: {e}")
|
91 |
return previous_transcription, "Error"
|
92 |
|
93 |
+
# β
7οΈβ£ Clear Function
|
94 |
def clear():
|
95 |
return ""
|
96 |
|
97 |
+
# β
8οΈβ£ Gradio Interface (Microphone Streaming)
|
98 |
with gr.Blocks() as microphone:
|
99 |
gr.Markdown(f"# Whisper Small - Real-Time Transcription (Optimized CPU) ποΈ")
|
100 |
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ultra-fast speech-to-text with better accuracy.")
|
|
|
114 |
)
|
115 |
clear_button.click(clear, outputs=[output])
|
116 |
|
117 |
+
# β
9οΈβ£ Gradio Interface (File Upload)
|
118 |
with gr.Blocks() as file:
|
119 |
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
120 |
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for better transcription accuracy.")
|
|
|
131 |
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
132 |
clear_button.click(clear, outputs=[output])
|
133 |
|
134 |
+
# β
π Final Gradio App
|
135 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
136 |
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
137 |
|
138 |
+
# β
1οΈβ£1οΈβ£ Run Gradio Locally
|
139 |
if __name__ == "__main__":
|
140 |
demo.launch()
|