Emmanuel08's picture
Update app.py
ed02176 verified
raw
history blame
4.74 kB
import torch
import torchaudio
import gradio as gr
import time
import numpy as np
import scipy.io.wavfile
from omegaconf import OmegaConf # βœ… Fix: Import omegaconf
# βœ… 1️⃣ Load Silero STT Model for CPU
device = torch.device("cpu")
torch_dtype = torch.float32
# βœ… 2️⃣ Load Silero Model & Decoder with `trust_repo=True`
torch.set_num_threads(4)
model, decoder, utils = torch.hub.load(repo_or_dir="snakers4/silero-models",
model="silero_stt",
language="en",
device=device,
trust_repo=True) # βœ… Fix: Avoids untrusted repo warning
(read_batch, split_into_batches, read_audio, prepare_model_input) = utils
# βœ… 3️⃣ Real-Time Streaming Transcription (Microphone)
def stream_transcribe(stream, new_chunk):
start_time = time.time()
try:
sr, y = new_chunk
# βœ… Convert stereo to mono
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
# βœ… Resample audio to 16kHz using torchaudio
y_tensor = torch.tensor(y)
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
# βœ… Append to Stream
if stream is not None:
stream = np.concatenate([stream, y_resampled])
else:
stream = y_resampled
# βœ… Prepare Model Input
input_tensor = torch.from_numpy(stream).unsqueeze(0)
input_tensor = prepare_model_input(input_tensor, device=device)
# βœ… Run Transcription
transcription = model(input_tensor)
text = decoder(transcription[0].cpu())
latency = time.time() - start_time
return stream, text, f"{latency:.2f} sec"
except Exception as e:
print(f"Error: {e}")
return stream, str(e), "Error"
# βœ… 4️⃣ Transcription for File Upload
def transcribe(inputs, previous_transcription):
start_time = time.time()
try:
# βœ… Convert file input to correct format
sample_rate, audio_data = inputs
# βœ… Resample using torchaudio (optimized)
audio_tensor = torch.tensor(audio_data)
resampled_audio = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=16000).numpy()
# βœ… Prepare Model Input
input_tensor = torch.from_numpy(resampled_audio).unsqueeze(0)
input_tensor = prepare_model_input(input_tensor, device=device)
# βœ… Run Transcription
transcription = model(input_tensor)
text = decoder(transcription[0].cpu())
previous_transcription += text
latency = time.time() - start_time
return previous_transcription, f"{latency:.2f} sec"
except Exception as e:
print(f"Error: {e}")
return previous_transcription, "Error"
# βœ… 5️⃣ Clear Function
def clear():
return ""
# βœ… 6️⃣ Gradio Interface (Microphone Streaming)
with gr.Blocks() as microphone:
gr.Markdown(f"# Silero STT - Real-Time Transcription (Optimized CPU) πŸŽ™οΈ")
gr.Markdown("Using `Silero STT` for lightweight, accurate speech-to-text.")
with gr.Row():
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
output = gr.Textbox(label="Live Transcription", value="")
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
with gr.Row():
clear_button = gr.Button("Clear Output")
state = gr.State()
input_audio_microphone.stream(
stream_transcribe, [state, input_audio_microphone],
[state, output, latency_textbox], time_limit=30, stream_every=1
)
clear_button.click(clear, outputs=[output])
# βœ… 7️⃣ Gradio Interface (File Upload)
with gr.Blocks() as file:
gr.Markdown(f"# Upload Audio File for Transcription 🎡")
gr.Markdown("Using `Silero STT` for offline, high-accuracy transcription.")
with gr.Row():
input_audio = gr.Audio(sources=["upload"], type="numpy")
output = gr.Textbox(label="Transcription", value="")
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear Output")
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
clear_button.click(clear, outputs=[output])
# βœ… 8️⃣ Final Gradio App
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
# βœ… 9️⃣ Run Gradio Locally
if __name__ == "__main__":
demo.launch()