Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import gradio as gr
|
4 |
+
import time
|
5 |
+
import numpy as np
|
6 |
+
import scipy.io.wavfile
|
7 |
+
|
8 |
+
# β
1οΈβ£ Load Silero STT Model for CPU
|
9 |
+
device = torch.device("cpu") # β
Ensuring CPU-only execution
|
10 |
+
torch_dtype = torch.float32
|
11 |
+
|
12 |
+
MODEL_NAME = "silero_stt"
|
13 |
+
|
14 |
+
# β
2οΈβ£ Load Silero Model & Decoder
|
15 |
+
torch.set_num_threads(4) # β
Improve CPU performance by using multiple threads
|
16 |
+
model, decoder, utils = torch.hub.load(repo_or_dir="snakers4/silero-models",
|
17 |
+
model="silero_stt",
|
18 |
+
language="en",
|
19 |
+
device=device)
|
20 |
+
(read_batch, split_into_batches, read_audio, prepare_model_input) = utils
|
21 |
+
|
22 |
+
# β
3οΈβ£ Real-Time Streaming Transcription (Microphone)
|
23 |
+
def stream_transcribe(stream, new_chunk):
|
24 |
+
start_time = time.time()
|
25 |
+
try:
|
26 |
+
sr, y = new_chunk
|
27 |
+
|
28 |
+
# β
Convert stereo to mono
|
29 |
+
if y.ndim > 1:
|
30 |
+
y = y.mean(axis=1)
|
31 |
+
|
32 |
+
y = y.astype(np.float32)
|
33 |
+
y /= np.max(np.abs(y))
|
34 |
+
|
35 |
+
# β
Resample audio to 16kHz using torchaudio
|
36 |
+
y_tensor = torch.tensor(y)
|
37 |
+
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
38 |
+
|
39 |
+
# β
Append to Stream
|
40 |
+
if stream is not None:
|
41 |
+
stream = np.concatenate([stream, y_resampled])
|
42 |
+
else:
|
43 |
+
stream = y_resampled
|
44 |
+
|
45 |
+
# β
Prepare Model Input
|
46 |
+
input_tensor = torch.from_numpy(stream).unsqueeze(0)
|
47 |
+
input_tensor = prepare_model_input(input_tensor, device=device)
|
48 |
+
|
49 |
+
# β
Run Transcription
|
50 |
+
transcription = model(input_tensor)
|
51 |
+
text = decoder(transcription[0].cpu())
|
52 |
+
|
53 |
+
latency = time.time() - start_time
|
54 |
+
return stream, text, f"{latency:.2f} sec"
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error: {e}")
|
58 |
+
return stream, str(e), "Error"
|
59 |
+
|
60 |
+
# β
4οΈβ£ Transcription for File Upload
|
61 |
+
def transcribe(inputs, previous_transcription):
|
62 |
+
start_time = time.time()
|
63 |
+
try:
|
64 |
+
# β
Convert file input to correct format
|
65 |
+
sample_rate, audio_data = inputs
|
66 |
+
|
67 |
+
# β
Resample using torchaudio (optimized)
|
68 |
+
audio_tensor = torch.tensor(audio_data)
|
69 |
+
resampled_audio = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=16000).numpy()
|
70 |
+
|
71 |
+
# β
Prepare Model Input
|
72 |
+
input_tensor = torch.from_numpy(resampled_audio).unsqueeze(0)
|
73 |
+
input_tensor = prepare_model_input(input_tensor, device=device)
|
74 |
+
|
75 |
+
# β
Run Transcription
|
76 |
+
transcription = model(input_tensor)
|
77 |
+
text = decoder(transcription[0].cpu())
|
78 |
+
|
79 |
+
previous_transcription += text
|
80 |
+
latency = time.time() - start_time
|
81 |
+
|
82 |
+
return previous_transcription, f"{latency:.2f} sec"
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error: {e}")
|
86 |
+
return previous_transcription, "Error"
|
87 |
+
|
88 |
+
# β
5οΈβ£ Clear Function
|
89 |
+
def clear():
|
90 |
+
return ""
|
91 |
+
|
92 |
+
# β
6οΈβ£ Gradio Interface (Microphone Streaming)
|
93 |
+
with gr.Blocks() as microphone:
|
94 |
+
gr.Markdown(f"# Silero STT - Real-Time Transcription (Optimized CPU) ποΈ")
|
95 |
+
gr.Markdown("Using `Silero STT` for lightweight, accurate speech-to-text.")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
99 |
+
output = gr.Textbox(label="Live Transcription", value="")
|
100 |
+
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
clear_button = gr.Button("Clear Output")
|
104 |
+
|
105 |
+
state = gr.State()
|
106 |
+
input_audio_microphone.stream(
|
107 |
+
stream_transcribe, [state, input_audio_microphone],
|
108 |
+
[state, output, latency_textbox], time_limit=30, stream_every=1
|
109 |
+
)
|
110 |
+
clear_button.click(clear, outputs=[output])
|
111 |
+
|
112 |
+
# β
7οΈβ£ Gradio Interface (File Upload)
|
113 |
+
with gr.Blocks() as file:
|
114 |
+
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
115 |
+
gr.Markdown("Using `Silero STT` for offline, high-accuracy transcription.")
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
input_audio = gr.Audio(sources=["upload"], type="numpy")
|
119 |
+
output = gr.Textbox(label="Transcription", value="")
|
120 |
+
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
submit_button = gr.Button("Submit")
|
124 |
+
clear_button = gr.Button("Clear Output")
|
125 |
+
|
126 |
+
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
127 |
+
clear_button.click(clear, outputs=[output])
|
128 |
+
|
129 |
+
# β
8οΈβ£ Final Gradio App
|
130 |
+
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
131 |
+
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
132 |
+
|
133 |
+
# β
9οΈβ£ Run Gradio Locally
|
134 |
+
if __name__ == "__main__":
|
135 |
+
demo.launch()
|