Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,228 @@
|
|
1 |
-
import requests
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import datetime
|
4 |
import gradio as gr
|
5 |
from openai import OpenAI
|
6 |
import os
|
7 |
|
8 |
-
# Coingecko API Base URL
|
9 |
-
BASE_URL = "https://api.coingecko.com/api/v3/"
|
10 |
-
|
11 |
-
# Coingecko API'den coin verilerini alma
|
12 |
-
def get_coin_list(currency="usd"):
|
13 |
-
url = f"{BASE_URL}coins/markets?vs_currency={currency}&order=market_cap_desc&per_page=100&page=1&sparkline=false"
|
14 |
-
response = requests.get(url)
|
15 |
-
return response.json()
|
16 |
-
|
17 |
-
def get_single_coin(id, currency="usd"):
|
18 |
-
url = f"{BASE_URL}coins/{id}"
|
19 |
-
response = requests.get(url)
|
20 |
-
return response.json()
|
21 |
-
|
22 |
-
def get_historical_chart(id, days=365, currency="usd"):
|
23 |
-
url = f"{BASE_URL}coins/{id}/market_chart?vs_currency={currency}&days={days}"
|
24 |
-
response = requests.get(url)
|
25 |
-
return response.json()
|
26 |
-
|
27 |
-
# OpenAI API Key ve Client Initialization
|
28 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
29 |
client = OpenAI(
|
30 |
base_url="https://api-inference.huggingface.co/v1/",
|
31 |
api_key=ACCESS_TOKEN,
|
32 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
demo = gr.ChatInterface(
|
91 |
fn=respond,
|
92 |
-
additional_inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
fill_height=True,
|
94 |
chatbot=chatbot,
|
95 |
theme="Nymbo/Nymbo_Theme",
|
96 |
)
|
|
|
97 |
|
98 |
with demo:
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
-
demo.
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
6 |
+
print("Access token loaded.")
|
7 |
+
|
8 |
client = OpenAI(
|
9 |
base_url="https://api-inference.huggingface.co/v1/",
|
10 |
api_key=ACCESS_TOKEN,
|
11 |
)
|
12 |
+
print("OpenAI client initialized.")
|
13 |
+
|
14 |
+
|
15 |
+
def respond(
|
16 |
+
message,
|
17 |
+
history: list[tuple[str, str]],
|
18 |
+
system_message,
|
19 |
+
max_tokens,
|
20 |
+
temperature,
|
21 |
+
top_p,
|
22 |
+
frequency_penalty,
|
23 |
+
seed,
|
24 |
+
custom_model
|
25 |
+
):
|
26 |
+
|
27 |
+
print(f"Received message: {message}")
|
28 |
+
print(f"History: {history}")
|
29 |
+
print(f"System message: {system_message}")
|
30 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
31 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
32 |
+
print(f"Selected model (custom_model): {custom_model}")
|
33 |
+
|
34 |
+
# Convert seed to None if -1 (meaning random)
|
35 |
+
if seed == -1:
|
36 |
+
seed = None
|
37 |
+
|
38 |
+
messages = [{"role": "system", "content": system_message}]
|
39 |
+
print("Initial messages array constructed.")
|
40 |
+
|
41 |
+
# Add conversation history to the context
|
42 |
+
for val in history:
|
43 |
+
user_part = val[0]
|
44 |
+
assistant_part = val[1]
|
45 |
+
if user_part:
|
46 |
+
messages.append({"role": "user", "content": user_part})
|
47 |
+
print(f"Added user message to context: {user_part}")
|
48 |
+
if assistant_part:
|
49 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
50 |
+
print(f"Added assistant message to context: {assistant_part}")
|
51 |
+
|
52 |
+
# Append the latest user message
|
53 |
+
messages.append({"role": "user", "content": message})
|
54 |
+
print("Latest user message appended.")
|
55 |
+
|
56 |
+
# If user provided a model, use that; otherwise, fall back to a default model
|
57 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
58 |
+
print(f"Model selected for inference: {model_to_use}")
|
59 |
+
|
60 |
+
# Start with an empty string to build the response as tokens stream in
|
61 |
+
response = ""
|
62 |
+
print("Sending request to OpenAI API.")
|
63 |
+
|
64 |
+
for message_chunk in client.chat.completions.create(
|
65 |
+
model=model_to_use,
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
stream=True,
|
68 |
+
temperature=temperature,
|
69 |
+
top_p=top_p,
|
70 |
+
frequency_penalty=frequency_penalty,
|
71 |
+
seed=seed,
|
72 |
+
messages=messages,
|
73 |
+
):
|
74 |
+
token_text = message_chunk.choices[0].delta.content
|
75 |
+
print(f"Received token: {token_text}")
|
76 |
+
response += token_text
|
77 |
+
yield response
|
78 |
+
|
79 |
+
print("Completed response generation.")
|
80 |
+
|
81 |
+
# GRADIO UI
|
82 |
|
83 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
|
84 |
+
print("Chatbot interface created.")
|
85 |
+
|
86 |
+
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
87 |
+
|
88 |
+
max_tokens_slider = gr.Slider(
|
89 |
+
minimum=1,
|
90 |
+
maximum=4096,
|
91 |
+
value=512,
|
92 |
+
step=1,
|
93 |
+
label="Max new tokens"
|
94 |
+
)
|
95 |
+
temperature_slider = gr.Slider(
|
96 |
+
minimum=0.1,
|
97 |
+
maximum=4.0,
|
98 |
+
value=0.7,
|
99 |
+
step=0.1,
|
100 |
+
label="Temperature"
|
101 |
+
)
|
102 |
+
top_p_slider = gr.Slider(
|
103 |
+
minimum=0.1,
|
104 |
+
maximum=1.0,
|
105 |
+
value=0.95,
|
106 |
+
step=0.05,
|
107 |
+
label="Top-P"
|
108 |
+
)
|
109 |
+
frequency_penalty_slider = gr.Slider(
|
110 |
+
minimum=-2.0,
|
111 |
+
maximum=2.0,
|
112 |
+
value=0.0,
|
113 |
+
step=0.1,
|
114 |
+
label="Frequency Penalty"
|
115 |
+
)
|
116 |
+
seed_slider = gr.Slider(
|
117 |
+
minimum=-1,
|
118 |
+
maximum=65535,
|
119 |
+
value=-1,
|
120 |
+
step=1,
|
121 |
+
label="Seed (-1 for random)"
|
122 |
+
)
|
123 |
+
|
124 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
125 |
+
custom_model_box = gr.Textbox(
|
126 |
+
value="",
|
127 |
+
label="Custom Model",
|
128 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
129 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
130 |
+
)
|
131 |
+
|
132 |
+
def set_custom_model_from_radio(selected):
|
133 |
+
"""
|
134 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
135 |
+
We will update the Custom Model text box with that selection automatically.
|
136 |
+
"""
|
137 |
+
print(f"Featured model selected: {selected}")
|
138 |
+
return selected
|
139 |
|
140 |
demo = gr.ChatInterface(
|
141 |
fn=respond,
|
142 |
+
additional_inputs=[
|
143 |
+
system_message_box,
|
144 |
+
max_tokens_slider,
|
145 |
+
temperature_slider,
|
146 |
+
top_p_slider,
|
147 |
+
frequency_penalty_slider,
|
148 |
+
seed_slider,
|
149 |
+
custom_model_box,
|
150 |
+
],
|
151 |
fill_height=True,
|
152 |
chatbot=chatbot,
|
153 |
theme="Nymbo/Nymbo_Theme",
|
154 |
)
|
155 |
+
print("ChatInterface object created.")
|
156 |
|
157 |
with demo:
|
158 |
+
with gr.Accordion("Model Selection", open=False):
|
159 |
+
model_search_box = gr.Textbox(
|
160 |
+
label="Filter Models",
|
161 |
+
placeholder="Search for a featured model...",
|
162 |
+
lines=1
|
163 |
+
)
|
164 |
+
print("Model search box created.")
|
165 |
+
|
166 |
+
models_list = [
|
167 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
168 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
169 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
170 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
171 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
172 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
173 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
174 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
175 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
176 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
177 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
178 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
179 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
180 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
181 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
182 |
+
"Qwen/QwQ-32B-Preview",
|
183 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
184 |
+
"microsoft/Phi-3.5-mini-instruct",
|
185 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
186 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
187 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
188 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
189 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
190 |
+
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
191 |
+
"tiiuae/falcon-7b-instruct",
|
192 |
+
"01-ai/Yi-1.5-34B-Chat",
|
193 |
+
]
|
194 |
+
print("Models list initialized.")
|
195 |
+
|
196 |
+
featured_model_radio = gr.Radio(
|
197 |
+
label="Select a model below",
|
198 |
+
choices=models_list,
|
199 |
+
value="meta-llama/Llama-3.3-70B-Instruct",
|
200 |
+
interactive=True
|
201 |
+
)
|
202 |
+
print("Featured models radio button created.")
|
203 |
+
|
204 |
+
def filter_models(search_term):
|
205 |
+
print(f"Filtering models with search term: {search_term}")
|
206 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
207 |
+
print(f"Filtered models: {filtered}")
|
208 |
+
return gr.update(choices=filtered)
|
209 |
+
|
210 |
+
model_search_box.change(
|
211 |
+
fn=filter_models,
|
212 |
+
inputs=model_search_box,
|
213 |
+
outputs=featured_model_radio
|
214 |
+
)
|
215 |
+
print("Model search box change event linked.")
|
216 |
+
|
217 |
+
featured_model_radio.change(
|
218 |
+
fn=set_custom_model_from_radio,
|
219 |
+
inputs=featured_model_radio,
|
220 |
+
outputs=custom_model_box
|
221 |
+
)
|
222 |
+
print("Featured model radio button change event linked.")
|
223 |
+
|
224 |
+
print("Gradio interface initialized.")
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
+
print("Launching the demo application.")
|
228 |
+
demo.launch()
|