Spaces:
Sleeping
Sleeping
import torch | |
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Model name | |
model_name = "ybelkada/falcon-7b-sharded-bf16" | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load model in CPU mode | |
device = "cpu" # Hugging Face Spaces does not provide free GPUs | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, # Use float16 for lower memory usage | |
device_map=device | |
) | |
# Streamlit UI | |
st.title("🦜 Falcon-7B Chatbot") | |
st.write("Ask me anything!") | |
# Store chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# User input | |
user_input = st.text_input("You:", "") | |
if user_input: | |
# Tokenize input | |
inputs = tokenizer(user_input, return_tensors="pt") | |
inputs.pop("token_type_ids", None) # Remove token_type_ids to avoid errors | |
inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to device | |
# Generate response | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95) | |
# Decode response | |
response = tokenizer.decode(output[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True) | |
# Store and display chat history | |
st.session_state.chat_history.append(("You", user_input)) | |
st.session_state.chat_history.append(("Bot", response)) | |
# Display chat history | |
for sender, message in st.session_state.chat_history: | |
st.write(f"**{sender}:** {message}") | |