SoundingStreet / SoundMapper.py
FQiao's picture
Upload 70 files
3324de2 verified
raw
history blame contribute delete
16.7 kB
from DepthEstimator import DepthEstimator
import numpy as np
from PIL import Image
import os
from GenerateCaptions import generate_caption
import re
from config import LOGS_DIR
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import torch
from PIL import Image, ImageDraw, ImageFont
import spacy
import gc
class SoundMapper:
def __init__(self):
self.depth_estimator = DepthEstimator()
# List of depth maps in dict["predicted_depth" ,"depth"] in (tensor, PIL.Image) format
self.device = "cuda"
# self.map_list = self.depth_estimator.estimate_depth(self.depth_estimator.image_dir)
self.map_list = None
self.image_dir = self.depth_estimator.image_dir
# self.nlp = spacy.load("en_core_web_sm")
self.nlp = None
self.dino = None
self.dino_processor = None
# self.dino = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to(self.device)
# self.dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
def _load_nlp(self):
if self.nlp is None:
self.nlp = spacy.load("en_core_web_sm")
return self.nlp
def _load_depth_maps(self):
if self.map_list is None:
self.map_list = self.depth_estimator.estimate_depth(self.depth_estimator.image_dir)
return self.map_list
def process_depth_maps(self) -> list:
depth_maps = self._load_depth_maps()
processed_maps = []
for item in depth_maps:
depth_map = item["depth"]
depth_array = np.array(depth_map)
normalization = depth_array / 255.0
processed_maps.append({
"original": depth_map,
"normalization": normalization
})
return processed_maps
# def create_depth_zone(self, processed_maps : list, num_zones = 3):
# zones_data = []
# for depth_data in processed_maps:
# normalized = depth_data["normalization"]
# thresholds = np.linspace(0, 1, num_zones+1)
# zones = []
# for i in range(num_zones):
# zone_mask = (normalized >= thresholds[i]) & (normalized < thresholds[i+1])
# zone_percentage = zone_mask.sum() / zone_mask.size
# zones.append({
# "range": (thresholds[i], thresholds[i+1]),
# "percentage": zone_percentage,
# "mask": zone_mask
# })
# zones_data.append(zones)
# return zones_data
def detect_sound_sources(self, caption_text: str) -> dict:
"""
Extract nouns and their sound descriptions from caption text.
Returns a dictionary mapping nouns to their descriptions.
"""
sound_sources = {}
nlp = self._load_nlp()
print(f"\n[DEBUG] Beginning sound source detection")
print(f"Raw caption text length: {len(caption_text)}")
print(f"First 100 chars: {caption_text[:100]}...")
# Split the caption by newlines to separate entries
lines = caption_text.strip().split('\n')
print(f"Found {len(lines)} lines after splitting")
for i, line in enumerate(lines):
# Skip empty lines
if not line.strip():
continue
print(f"Processing line {i}: {line[:50]}{'...' if len(line) > 50 else ''}")
# Check if line matches the expected format (Noun: description)
if ':' in line:
parts = line.split(':', 1) # Split only on the first colon
# Clean up the noun part - remove numbers and leading/trailing whitespace
noun_part = parts[0].strip().lower()
# Remove list numbering (e.g., "1. ", "2. ", etc.)
noun_part = re.sub(r'^\d+\.\s*', '', noun_part)
description = parts[1].strip()
# Clean any markdown formatting
noun = re.sub(r'[*()]', '', noun_part).strip()
description = re.sub(r'[*()]', '', description).strip()
# Separate the description at em dash if present
if ' — ' in description:
description = description.split(' — ', 1)[0].strip()
elif ' - ' in description:
description = description.split(' - ', 1)[0].strip()
print(f" - Found potential noun: '{noun}' with description: '{description[:30]}...'")
# Skip if noun contains invalid characters or is too short
if '##' not in noun and len(noun) > 1 and noun[0].isalpha():
sound_sources[noun] = description
print(f" √ Added to sound sources")
else:
print(f" × Skipped (invalid format)")
# If no structured format found, try to extract nouns from the text
if not sound_sources:
print("No structured format found, falling back to noun extraction")
all_nouns = []
doc = nlp(caption_text)
for token in doc:
if token.pos_ == "NOUN" and len(token.text) > 1:
if token.text[0].isalpha():
all_nouns.append(token.text.lower())
print(f" - Extracted noun: '{token.text.lower()}'")
for noun in all_nouns:
sound_sources[noun] = "" # Empty description
print(f"[DEBUG] Final detected sound sources: {list(sound_sources.keys())}")
return sound_sources
def map_bbox_to_depth_zone(self, bbox, depth_map, num_zones=3):
x1, y1, x2, y2 = [int(coord) for coord in bbox]
height, width = depth_map.shape
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(width, x2), min(height, y2)
depth_roi = depth_map[y1:y2, x1:x2]
if depth_roi.size == 0:
return num_zones - 1
mean_depth = np.mean(depth_roi)
thresholds = self.create_histogram_depth_zones(depth_map, num_zones)
for i in range(num_zones):
if thresholds[i] <= mean_depth < thresholds[i+1]:
return i
return num_zones - 1
def detect_objects(self, nouns : list, image: Image):
filtered_nouns = []
for noun in nouns:
if '##' not in noun and len(noun) > 1 and noun[0].isalpha():
filtered_nouns.append(noun)
print(f"Detecting objects for nouns: {filtered_nouns}")
if self.dino is None:
self.dino = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(self.device)
self.dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
else:
self.dino = self.dino.to(self.device)
text_prompt = " . ".join(filtered_nouns)
inputs = self.dino_processor(images=image, text=text_prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.dino(**inputs)
results = self.dino_processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.25,
text_threshold=0.25,
target_sizes=[image.size[::-1]]
)
result = results[0]
labels = result["labels"]
bboxes = result["boxes"]
clean_labels = []
for label in labels:
clean_label = re.sub(r'##\w+', '', label)
clean_label = self._split_combined_words(clean_label, filtered_nouns)
clean_labels.append(clean_label)
self.dino = self.dino.to("cpu")
torch.cuda.empty_cache()
del inputs, outputs, results
print(f"Detected objects: {clean_labels}")
return (clean_labels, bboxes)
def _split_combined_words(self, text, nouns=None):
nlp = self._load_nlp()
if nouns is None:
known_words = set()
doc = nlp(text)
for token in doc:
if token.pos_ == "NOUN" and len(token.text) > 1:
known_words.add(token.text.lower())
else:
known_words = set(nouns)
result = []
for word in text.split():
if word in known_words:
result.append(word)
continue
found = False
for known in known_words:
if known in word and len(known) > 2:
result.append(known)
found = True
if not found:
result.append(word)
return " ".join(result)
def process_dino_labels(self, labels):
processed_labels = []
nlp = self._load_nlp()
for label in labels:
if label.startswith('##'):
continue
label = re.sub(r'[*()]', '', label).strip()
parts = label.split()
for part in parts:
if part.startswith('##'):
continue
doc = nlp(part)
for token in doc:
if token.pos_ == "NOUN" and len(token.text) > 1:
processed_labels.append(token.text.lower())
unique_labels = []
for label in processed_labels:
if label not in unique_labels:
unique_labels.append(label)
return unique_labels
def create_histogram_depth_zones(self, depth_map, num_zones = 3):
# using 50 bins because it is faster
hist, bin_edge = np.histogram(depth_map.flatten(), bins=50, range=(0, 1))
cumulative = np.cumsum(hist) / np.sum(hist)
thresholds = [0.0]
for i in range(1, num_zones):
target = i / num_zones
idx = np.argmin(np.abs(cumulative - target))
thresholds.append(bin_edge[idx + 1])
thresholds.append(1.0)
return thresholds
def analyze_object_depths(self, image_path, depth_map, lat, lon, caption_data=None, all_objects=False):
image = Image.open(image_path)
if caption_data is None:
caption = generate_caption(lat, lon)
if not caption:
print(f"Failed to generate caption for {image_path}")
return []
caption_text = caption.get("sound_description", "")
else:
caption_text = caption_data.get("sound_description", "")
# Debug: Print the raw caption text
print(f"\n[DEBUG] Raw caption text for {os.path.basename(image_path)}:")
print(caption_text)
print("-" * 50)
if not caption_text:
print(f"No caption text available for {image_path}")
return []
# Extract nouns and their sound descriptions
sound_sources = self.detect_sound_sources(caption_text)
# Debug: Print the extracted sound sources
print(f"[DEBUG] Extracted sound sources:")
for noun, desc in sound_sources.items():
print(f" - {noun}: {desc}")
print("-" * 50)
if not sound_sources:
print(f"No sound sources detected in caption for {image_path}")
return []
# Get list of nouns only for object detection
nouns = list(sound_sources.keys())
# Debug: Print the list of nouns being used for detection
print(f"[DEBUG] Nouns for object detection: {nouns}")
print("-" * 50)
labels, bboxes = self.detect_objects(nouns, image)
if len(labels) == 0 or len(bboxes) == 0:
print(f"No objects detected in {image_path}")
return []
object_data = []
known_objects = set(nouns) if nouns else set()
for i, (label, bbox) in enumerate(zip(labels, bboxes)):
if '##' in label:
continue
x1, y1, x2, y2 = [int(coord) for coord in bbox]
height, width = depth_map.shape
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(width, x2), min(height, y2)
depth_roi = depth_map[y1:y2, x1:x2]
if depth_roi.size == 0:
continue
mean_depth = np.mean(depth_roi)
matched_noun = None
matched_desc = None
for word in label.split():
word = word.lower()
if word in sound_sources:
matched_noun = word
matched_desc = sound_sources[word]
break
if matched_noun is None:
for noun in sound_sources:
if noun in label.lower():
matched_noun = noun
matched_desc = sound_sources[noun]
break
if matched_noun is None:
for word in label.split():
if len(word) > 1 and word[0].isalpha() and '##' not in word:
matched_noun = word.lower()
matched_desc = "" # No description available
break
if matched_noun:
thresholds = self.create_histogram_depth_zones(depth_map, num_zones=3)
zone = 0 # The default is 0 which is the closest zone
for i in range(3):
if thresholds[i] <= mean_depth < thresholds[i+1]:
zone = i
break
object_data.append({
"original_label": matched_noun,
"bbox": bbox.tolist(),
"depth_zone": zone,
"zone_description": ["near", "medium", "far"][zone],
"mean_depth": mean_depth,
"weight": 1.0 - mean_depth,
"sound_description": matched_desc
})
if all_objects:
object_data.sort(key=lambda x: x["mean_depth"])
return object_data
else:
if not object_data:
return []
closest_object = min(object_data, key=lambda x: x["mean_depth"])
return [closest_object]
def cleanup(self):
if hasattr(self, 'depth_estimator') and self.depth_estimator is not None:
del self.depth_estimator
self.depth_estimator = None
if self.map_list is not None:
del self.map_list
self.map_list = None
if self.dino is not None:
self.dino = self.dino.to("cpu")
del self.dino
self.dino = None
del self.dino_processor
self.dino_processor = None
if self.nlp is not None:
del self.nlp
self.nlp = None
torch.cuda.empty_cache()
gc.collect()
def test_object_depth_analysis(self):
"""
Test the object depth analysis on all images in the directory.
"""
# Process depth maps first
processed_maps = self.process_depth_maps()
# Get list of original image paths
image_dir = self.depth_estimator.image_dir
image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith(".jpg")]
results = []
# For each image and its corresponding depth map
for i, (image_path, processed_map) in enumerate(zip(image_paths, processed_maps)):
# Extract the normalized depth map
depth_map = processed_map["normalization"]
# Analyze objects and their depths
object_depths = self.analyze_object_depths(image_path, depth_map)
# Store results
results.append({
"image_path": image_path,
"object_depths": object_depths
})
# Print some information for debugging
print(f"Analyzed {image_path}:")
for obj in object_depths:
print(f" - {obj['original_label']} (Zone: {obj['zone_description']})")
return results