Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -108,15 +108,104 @@
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
import gradio as gr
|
112 |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
from transformers.image_utils import load_image
|
114 |
from threading import Thread
|
115 |
import time
|
116 |
import torch
|
117 |
-
import spaces
|
118 |
|
119 |
-
|
|
|
120 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
MODEL_ID,
|
@@ -124,12 +213,11 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
124 |
torch_dtype=torch.bfloat16
|
125 |
).to("cuda").eval()
|
126 |
|
127 |
-
@spaces.GPU(duration=200)
|
128 |
def model_inference(input_dict, history):
|
129 |
text = input_dict["text"]
|
130 |
files = input_dict["files"]
|
131 |
|
132 |
-
#
|
133 |
if len(files) > 1:
|
134 |
images = [load_image(image) for image in files]
|
135 |
elif len(files) == 1:
|
@@ -137,15 +225,13 @@ def model_inference(input_dict, history):
|
|
137 |
else:
|
138 |
images = []
|
139 |
|
140 |
-
#
|
141 |
if text == "" and not images:
|
142 |
-
gr.Error("Please input a query and optionally image(s).")
|
143 |
-
return
|
144 |
if text == "" and images:
|
145 |
-
gr.Error("Please input a text query along with the image(s).")
|
146 |
-
return
|
147 |
|
148 |
-
#
|
149 |
messages = [
|
150 |
{
|
151 |
"role": "user",
|
@@ -156,7 +242,7 @@ def model_inference(input_dict, history):
|
|
156 |
}
|
157 |
]
|
158 |
|
159 |
-
#
|
160 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
inputs = processor(
|
162 |
text=[prompt],
|
@@ -165,33 +251,44 @@ def model_inference(input_dict, history):
|
|
165 |
padding=True,
|
166 |
).to("cuda")
|
167 |
|
168 |
-
#
|
|
|
|
|
|
|
169 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
thread.start()
|
175 |
|
176 |
-
#
|
177 |
buffer = ""
|
178 |
-
yield "
|
179 |
for new_text in streamer:
|
180 |
buffer += new_text
|
181 |
-
time.sleep(0.01)
|
182 |
yield buffer
|
183 |
|
|
|
184 |
examples = [
|
185 |
[{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
186 |
]
|
187 |
|
188 |
-
|
|
|
189 |
fn=model_inference,
|
190 |
description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
191 |
examples=examples,
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
195 |
cache_examples=False,
|
196 |
)
|
197 |
|
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
111 |
+
# import gradio as gr
|
112 |
+
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
+
# from transformers.image_utils import load_image
|
114 |
+
# from threading import Thread
|
115 |
+
# import time
|
116 |
+
# import torch
|
117 |
+
# import spaces
|
118 |
+
|
119 |
+
# MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"
|
120 |
+
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
+
# MODEL_ID,
|
123 |
+
# trust_remote_code=True,
|
124 |
+
# torch_dtype=torch.bfloat16
|
125 |
+
# ).to("cuda").eval()
|
126 |
+
|
127 |
+
# @spaces.GPU(duration=200)
|
128 |
+
# def model_inference(input_dict, history):
|
129 |
+
# text = input_dict["text"]
|
130 |
+
# files = input_dict["files"]
|
131 |
+
|
132 |
+
# # Load images if provided
|
133 |
+
# if len(files) > 1:
|
134 |
+
# images = [load_image(image) for image in files]
|
135 |
+
# elif len(files) == 1:
|
136 |
+
# images = [load_image(files[0])]
|
137 |
+
# else:
|
138 |
+
# images = []
|
139 |
+
|
140 |
+
# # Validate input
|
141 |
+
# if text == "" and not images:
|
142 |
+
# gr.Error("Please input a query and optionally image(s).")
|
143 |
+
# return
|
144 |
+
# if text == "" and images:
|
145 |
+
# gr.Error("Please input a text query along with the image(s).")
|
146 |
+
# return
|
147 |
+
|
148 |
+
# # Prepare messages for the model
|
149 |
+
# messages = [
|
150 |
+
# {
|
151 |
+
# "role": "user",
|
152 |
+
# "content": [
|
153 |
+
# *[{"type": "image", "image": image} for image in images],
|
154 |
+
# {"type": "text", "text": text},
|
155 |
+
# ],
|
156 |
+
# }
|
157 |
+
# ]
|
158 |
+
|
159 |
+
# # Apply chat template and process inputs
|
160 |
+
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
+
# inputs = processor(
|
162 |
+
# text=[prompt],
|
163 |
+
# images=images if images else None,
|
164 |
+
# return_tensors="pt",
|
165 |
+
# padding=True,
|
166 |
+
# ).to("cuda")
|
167 |
+
|
168 |
+
# # Set up streamer for real-time output
|
169 |
+
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
+
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
+
|
172 |
+
# # Start generation in a separate thread
|
173 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
+
# thread.start()
|
175 |
+
|
176 |
+
# # Stream the output
|
177 |
+
# buffer = ""
|
178 |
+
# yield "Thinking..."
|
179 |
+
# for new_text in streamer:
|
180 |
+
# buffer += new_text
|
181 |
+
# time.sleep(0.01)
|
182 |
+
# yield buffer
|
183 |
+
|
184 |
+
# examples = [
|
185 |
+
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
186 |
+
# ]
|
187 |
+
|
188 |
+
# demo = gr.ChatInterface(
|
189 |
+
# fn=model_inference,
|
190 |
+
# description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
191 |
+
# examples=examples,
|
192 |
+
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
193 |
+
# stop_btn="Stop Generation",
|
194 |
+
# multimodal=True,
|
195 |
+
# cache_examples=False,
|
196 |
+
# )
|
197 |
+
|
198 |
+
# demo.launch(debug=True)
|
199 |
+
|
200 |
import gradio as gr
|
201 |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
202 |
from transformers.image_utils import load_image
|
203 |
from threading import Thread
|
204 |
import time
|
205 |
import torch
|
|
|
206 |
|
207 |
+
# 加载模型和处理器
|
208 |
+
MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
|
209 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
210 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
211 |
MODEL_ID,
|
|
|
213 |
torch_dtype=torch.bfloat16
|
214 |
).to("cuda").eval()
|
215 |
|
|
|
216 |
def model_inference(input_dict, history):
|
217 |
text = input_dict["text"]
|
218 |
files = input_dict["files"]
|
219 |
|
220 |
+
# 加载图片(如果提供)
|
221 |
if len(files) > 1:
|
222 |
images = [load_image(image) for image in files]
|
223 |
elif len(files) == 1:
|
|
|
225 |
else:
|
226 |
images = []
|
227 |
|
228 |
+
# 输入验证
|
229 |
if text == "" and not images:
|
230 |
+
return gr.Error("Please input a query and optionally image(s).")
|
|
|
231 |
if text == "" and images:
|
232 |
+
return gr.Error("Please input a text query along with the image(s).")
|
|
|
233 |
|
234 |
+
# 准备输入消息
|
235 |
messages = [
|
236 |
{
|
237 |
"role": "user",
|
|
|
242 |
}
|
243 |
]
|
244 |
|
245 |
+
# 使用处理器准备输入
|
246 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
247 |
inputs = processor(
|
248 |
text=[prompt],
|
|
|
251 |
padding=True,
|
252 |
).to("cuda")
|
253 |
|
254 |
+
# 设置最大输出token数以控制推���时间
|
255 |
+
max_new_tokens = 1024 # 可以根据实际需要调整
|
256 |
+
|
257 |
+
# 创建流式输出
|
258 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
259 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
260 |
+
|
261 |
+
# 使用后台线程执行推理
|
262 |
+
def run_inference():
|
263 |
+
model.generate(**generation_kwargs)
|
264 |
|
265 |
+
thread = Thread(target=run_inference)
|
|
|
266 |
thread.start()
|
267 |
|
268 |
+
# 生成过程中更新UI
|
269 |
buffer = ""
|
270 |
+
yield "Processing your request, please wait..."
|
271 |
for new_text in streamer:
|
272 |
buffer += new_text
|
273 |
+
time.sleep(0.01) # 给UI流畅更新的时间
|
274 |
yield buffer
|
275 |
|
276 |
+
# 示例输入
|
277 |
examples = [
|
278 |
[{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
279 |
]
|
280 |
|
281 |
+
# 创建Gradio界面
|
282 |
+
demo = gr.Interface(
|
283 |
fn=model_inference,
|
284 |
description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
285 |
examples=examples,
|
286 |
+
inputs=gr.Chatbox(),
|
287 |
+
outputs=gr.Textbox(),
|
288 |
+
live=True,
|
289 |
+
allow_flagging="never",
|
290 |
+
layout="vertical",
|
291 |
+
title="Multimodal Inference with Fancy-MLLM",
|
292 |
cache_examples=False,
|
293 |
)
|
294 |
|