Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
3 |
from threading import Thread
|
4 |
-
from qwen_vl_utils import process_vision_info
|
5 |
-
import torch
|
6 |
import time
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
# Load
|
14 |
-
|
15 |
-
|
16 |
-
)
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
# Prepare input data
|
21 |
messages = [
|
22 |
{
|
23 |
"role": "user",
|
24 |
"content": [
|
25 |
-
{"type": "image", "image": image
|
26 |
{"type": "text", "text": text},
|
27 |
],
|
28 |
}
|
29 |
]
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
34 |
inputs = processor(
|
35 |
-
text=[
|
36 |
-
images=
|
37 |
-
videos=video_inputs,
|
38 |
-
padding=True,
|
39 |
return_tensors="pt",
|
40 |
-
|
41 |
-
|
42 |
-
# Move inputs to the same device as the model
|
43 |
-
inputs = inputs.to(model.device)
|
44 |
|
|
|
45 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
46 |
-
generation_kwargs = dict(
|
47 |
-
|
48 |
-
|
49 |
-
max_new_tokens=4096,
|
50 |
-
top_p=0.001,
|
51 |
-
top_k=1,
|
52 |
-
temperature=0.01,
|
53 |
-
repetition_penalty=1.0,
|
54 |
-
)
|
55 |
-
|
56 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
thread.start()
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
.markdown-text {
|
79 |
-
white-space: pre-wrap;
|
80 |
-
word-wrap: break-word;
|
81 |
-
}
|
82 |
-
.markdown-output {
|
83 |
-
min-height: 20vh;
|
84 |
-
max-width: 100%;
|
85 |
-
overflow-y: auto;
|
86 |
-
}
|
87 |
-
#qwen-md .katex-display { display: inline; }
|
88 |
-
#qwen-md .katex-display>.katex { display: inline; }
|
89 |
-
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
90 |
-
"""
|
91 |
-
|
92 |
-
with gr.Blocks(css=Css) as demo:
|
93 |
-
gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
with gr.Column():
|
97 |
-
input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
|
98 |
-
input_text = gr.Textbox(label="Input your question")
|
99 |
-
with gr.Row():
|
100 |
-
clear_btn = gr.ClearButton([input_image, input_text])
|
101 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
102 |
-
|
103 |
-
with gr.Column():
|
104 |
-
output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
|
105 |
-
|
106 |
-
submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
|
107 |
-
|
108 |
-
demo.launch(share=False)
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
+
# from threading import Thread
|
4 |
+
# from qwen_vl_utils import process_vision_info
|
5 |
+
# import torch
|
6 |
+
# import time
|
7 |
+
|
8 |
+
# # Check if a GPU is available
|
9 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# local_path = "Fancy-MLLM/R1-OneVision-7B"
|
12 |
+
|
13 |
+
# # Load the model on the appropriate device (GPU if available, otherwise CPU)
|
14 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
15 |
+
# local_path, torch_dtype="auto", device_map=device
|
16 |
+
# )
|
17 |
+
# processor = AutoProcessor.from_pretrained(local_path)
|
18 |
+
|
19 |
+
# def generate_output(image, text, button_click):
|
20 |
+
# # Prepare input data
|
21 |
+
# messages = [
|
22 |
+
# {
|
23 |
+
# "role": "user",
|
24 |
+
# "content": [
|
25 |
+
# {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
|
26 |
+
# {"type": "text", "text": text},
|
27 |
+
# ],
|
28 |
+
# }
|
29 |
+
# ]
|
30 |
+
|
31 |
+
# # Prepare inputs for the model
|
32 |
+
# text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
33 |
+
# image_inputs, video_inputs = process_vision_info(messages)
|
34 |
+
# inputs = processor(
|
35 |
+
# text=[text_input],
|
36 |
+
# images=image_inputs,
|
37 |
+
# videos=video_inputs,
|
38 |
+
# padding=True,
|
39 |
+
# return_tensors="pt",
|
40 |
+
# )
|
41 |
+
|
42 |
+
# # Move inputs to the same device as the model
|
43 |
+
# inputs = inputs.to(model.device)
|
44 |
+
|
45 |
+
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
46 |
+
# generation_kwargs = dict(
|
47 |
+
# **inputs,
|
48 |
+
# streamer=streamer,
|
49 |
+
# max_new_tokens=4096,
|
50 |
+
# top_p=0.001,
|
51 |
+
# top_k=1,
|
52 |
+
# temperature=0.01,
|
53 |
+
# repetition_penalty=1.0,
|
54 |
+
# )
|
55 |
+
|
56 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
+
# thread.start()
|
58 |
+
# generated_text = ''
|
59 |
+
|
60 |
+
# try:
|
61 |
+
# for new_text in streamer:
|
62 |
+
# generated_text += new_text
|
63 |
+
# yield f"{generated_text}"
|
64 |
+
# except Exception as e:
|
65 |
+
# print(f"Error: {e}")
|
66 |
+
# yield f"Error occurred: {str(e)}"
|
67 |
+
|
68 |
+
# Css = """
|
69 |
+
# #output-markdown {
|
70 |
+
# overflow-y: auto;
|
71 |
+
# white-space: pre-wrap;
|
72 |
+
# word-wrap: break-word;
|
73 |
+
# }
|
74 |
+
# #output-markdown .math {
|
75 |
+
# overflow-x: auto;
|
76 |
+
# max-width: 100%;
|
77 |
+
# }
|
78 |
+
# .markdown-text {
|
79 |
+
# white-space: pre-wrap;
|
80 |
+
# word-wrap: break-word;
|
81 |
+
# }
|
82 |
+
# .markdown-output {
|
83 |
+
# min-height: 20vh;
|
84 |
+
# max-width: 100%;
|
85 |
+
# overflow-y: auto;
|
86 |
+
# }
|
87 |
+
# #qwen-md .katex-display { display: inline; }
|
88 |
+
# #qwen-md .katex-display>.katex { display: inline; }
|
89 |
+
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
90 |
+
# """
|
91 |
+
|
92 |
+
# with gr.Blocks(css=Css) as demo:
|
93 |
+
# gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
|
94 |
+
|
95 |
+
# with gr.Row():
|
96 |
+
# with gr.Column():
|
97 |
+
# input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
|
98 |
+
# input_text = gr.Textbox(label="Input your question")
|
99 |
+
# with gr.Row():
|
100 |
+
# clear_btn = gr.ClearButton([input_image, input_text])
|
101 |
+
# submit_btn = gr.Button("Submit", variant="primary")
|
102 |
+
|
103 |
+
# with gr.Column():
|
104 |
+
# output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
|
105 |
+
|
106 |
+
# submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
|
107 |
+
|
108 |
+
# demo.launch(share=False)
|
109 |
+
|
110 |
+
|
111 |
import gradio as gr
|
112 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
+
from transformers.image_utils import load_image
|
114 |
from threading import Thread
|
|
|
|
|
115 |
import time
|
116 |
+
import torch
|
117 |
+
import spaces
|
118 |
|
119 |
+
MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
|
120 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
+
MODEL_ID,
|
123 |
+
trust_remote_code=True,
|
124 |
+
torch_dtype=torch.bfloat16
|
125 |
+
).to("cuda").eval()
|
126 |
|
127 |
+
@spaces.GPU
|
128 |
+
def model_inference(input_dict, history):
|
129 |
+
text = input_dict["text"]
|
130 |
+
files = input_dict["files"]
|
131 |
|
132 |
+
# Load images if provided
|
133 |
+
if len(files) > 1:
|
134 |
+
images = [load_image(image) for image in files]
|
135 |
+
elif len(files) == 1:
|
136 |
+
images = [load_image(files[0])]
|
137 |
+
else:
|
138 |
+
images = []
|
139 |
+
|
140 |
+
# Validate input
|
141 |
+
if text == "" and not images:
|
142 |
+
gr.Error("Please input a query and optionally image(s).")
|
143 |
+
return
|
144 |
+
if text == "" and images:
|
145 |
+
gr.Error("Please input a text query along with the image(s).")
|
146 |
+
return
|
147 |
|
148 |
+
# Prepare messages for the model
|
|
|
149 |
messages = [
|
150 |
{
|
151 |
"role": "user",
|
152 |
"content": [
|
153 |
+
*[{"type": "image", "image": image} for image in images],
|
154 |
{"type": "text", "text": text},
|
155 |
],
|
156 |
}
|
157 |
]
|
158 |
+
|
159 |
+
# Apply chat template and process inputs
|
160 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
161 |
inputs = processor(
|
162 |
+
text=[prompt],
|
163 |
+
images=images if images else None,
|
|
|
|
|
164 |
return_tensors="pt",
|
165 |
+
padding=True,
|
166 |
+
).to("cuda")
|
|
|
|
|
167 |
|
168 |
+
# Set up streamer for real-time output
|
169 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
+
|
172 |
+
# Start generation in a separate thread
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
thread.start()
|
175 |
+
|
176 |
+
# Stream the output
|
177 |
+
buffer = ""
|
178 |
+
yield "Thinking..."
|
179 |
+
for new_text in streamer:
|
180 |
+
buffer += new_text
|
181 |
+
time.sleep(0.01)
|
182 |
+
yield buffer
|
183 |
+
|
184 |
+
|
185 |
+
demo = gr.ChatInterface(
|
186 |
+
fn=model_inference,
|
187 |
+
description="# **Fancy-MLLM/R1-OneVision-7B**",
|
188 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
189 |
+
stop_btn="Stop Generation",
|
190 |
+
multimodal=True,
|
191 |
+
cache_examples=False,
|
192 |
+
)
|
193 |
+
|
194 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|