Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -108,114 +108,264 @@
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
111 |
-
import gradio as gr
|
112 |
-
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
-
from transformers.image_utils import load_image
|
114 |
-
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
import time
|
|
|
|
|
|
|
116 |
import torch
|
|
|
|
|
|
|
117 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
messages = [
|
150 |
-
|
151 |
"role": "user",
|
152 |
"content": [
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
],
|
156 |
}
|
157 |
]
|
158 |
-
|
159 |
-
#
|
160 |
-
|
|
|
|
|
|
|
161 |
inputs = processor(
|
162 |
-
text=[
|
163 |
-
images=
|
164 |
-
|
165 |
padding=True,
|
166 |
-
|
167 |
-
|
168 |
-
# # Set up streamer for real-time output
|
169 |
-
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
-
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
-
|
172 |
-
# # Start generation in a separate thread
|
173 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
-
# thread.start()
|
175 |
-
|
176 |
-
# # Stream the output
|
177 |
-
# buffer = ""
|
178 |
-
# yield "Thinking..."
|
179 |
-
# for new_text in streamer:
|
180 |
-
# buffer += new_text
|
181 |
-
# time.sleep(0.01)
|
182 |
-
# yield buffer
|
183 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
184 |
-
generation_kwargs = dict(
|
185 |
-
**inputs,
|
186 |
-
streamer=streamer,
|
187 |
-
max_new_tokens=2048,
|
188 |
-
top_p=0.001,
|
189 |
-
top_k=1,
|
190 |
-
temperature=0.01,
|
191 |
-
repetition_penalty=1.0,
|
192 |
)
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
)
|
|
|
|
|
|
|
|
|
|
|
219 |
|
|
|
220 |
demo.launch(debug=True)
|
221 |
|
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
111 |
+
# import gradio as gr
|
112 |
+
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
+
# from transformers.image_utils import load_image
|
114 |
+
# from threading import Thread
|
115 |
+
# import time
|
116 |
+
# import torch
|
117 |
+
# import spaces
|
118 |
+
|
119 |
+
# MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
|
120 |
+
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
+
# MODEL_ID,
|
123 |
+
# trust_remote_code=True,
|
124 |
+
# torch_dtype=torch.bfloat16
|
125 |
+
# ).to("cuda").eval()
|
126 |
+
|
127 |
+
# @spaces.GPU(duration=200)
|
128 |
+
# def model_inference(input_dict, history):
|
129 |
+
# text = input_dict["text"]
|
130 |
+
# files = input_dict["files"]
|
131 |
+
|
132 |
+
# # Load images if provided
|
133 |
+
# if len(files) > 1:
|
134 |
+
# images = [load_image(image) for image in files]
|
135 |
+
# elif len(files) == 1:
|
136 |
+
# images = [load_image(files[0])]
|
137 |
+
# else:
|
138 |
+
# images = []
|
139 |
+
|
140 |
+
# # Validate input
|
141 |
+
# if text == "" and not images:
|
142 |
+
# gr.Error("Please input a query and optionally image(s).")
|
143 |
+
# return
|
144 |
+
# if text == "" and images:
|
145 |
+
# gr.Error("Please input a text query along with the image(s).")
|
146 |
+
# return
|
147 |
+
|
148 |
+
# # Prepare messages for the model
|
149 |
+
# messages = [
|
150 |
+
# {
|
151 |
+
# "role": "user",
|
152 |
+
# "content": [
|
153 |
+
# *[{"type": "image", "image": image} for image in images],
|
154 |
+
# {"type": "text", "text": text},
|
155 |
+
# ],
|
156 |
+
# }
|
157 |
+
# ]
|
158 |
+
|
159 |
+
# # Apply chat template and process inputs
|
160 |
+
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
+
# inputs = processor(
|
162 |
+
# text=[prompt],
|
163 |
+
# images=images if images else None,
|
164 |
+
# return_tensors="pt",
|
165 |
+
# padding=True,
|
166 |
+
# ).to("cuda")
|
167 |
+
|
168 |
+
# # # Set up streamer for real-time output
|
169 |
+
# # streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
+
# # generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
+
|
172 |
+
# # # Start generation in a separate thread
|
173 |
+
# # thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
+
# # thread.start()
|
175 |
+
|
176 |
+
# # # Stream the output
|
177 |
+
# # buffer = ""
|
178 |
+
# # yield "Thinking..."
|
179 |
+
# # for new_text in streamer:
|
180 |
+
# # buffer += new_text
|
181 |
+
# # time.sleep(0.01)
|
182 |
+
# # yield buffer
|
183 |
+
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
184 |
+
# generation_kwargs = dict(
|
185 |
+
# **inputs,
|
186 |
+
# streamer=streamer,
|
187 |
+
# max_new_tokens=2048,
|
188 |
+
# top_p=0.001,
|
189 |
+
# top_k=1,
|
190 |
+
# temperature=0.01,
|
191 |
+
# repetition_penalty=1.0,
|
192 |
+
# )
|
193 |
+
|
194 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
195 |
+
# thread.start()
|
196 |
+
# generated_text = ''
|
197 |
+
|
198 |
+
# try:
|
199 |
+
# for new_text in streamer:
|
200 |
+
# generated_text += new_text
|
201 |
+
# yield generated_text
|
202 |
+
# except Exception as e:
|
203 |
+
# print(f"Error: {e}")
|
204 |
+
# yield f"Error occurred: {str(e)}"
|
205 |
+
|
206 |
+
# examples = [
|
207 |
+
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
208 |
+
# ]
|
209 |
+
|
210 |
+
# demo = gr.ChatInterface(
|
211 |
+
# fn=model_inference,
|
212 |
+
# description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
213 |
+
# examples=examples,
|
214 |
+
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
215 |
+
# stop_btn="Stop Generation",
|
216 |
+
# multimodal=True,
|
217 |
+
# cache_examples=False,
|
218 |
+
# )
|
219 |
+
|
220 |
+
# demo.launch(debug=True)
|
221 |
+
|
222 |
+
|
223 |
+
import os
|
224 |
+
from datetime import datetime
|
225 |
+
import subprocess
|
226 |
import time
|
227 |
+
|
228 |
+
# Third-party imports
|
229 |
+
import numpy as np
|
230 |
import torch
|
231 |
+
from PIL import Image
|
232 |
+
import accelerate
|
233 |
+
import gradio as gr
|
234 |
import spaces
|
235 |
+
from transformers import (
|
236 |
+
Qwen2_5_VLForConditionalGeneration,
|
237 |
+
AutoTokenizer,
|
238 |
+
AutoProcessor
|
239 |
+
)
|
240 |
+
|
241 |
+
# Local imports
|
242 |
+
from qwen_vl_utils import process_vision_info
|
243 |
+
|
244 |
+
# Set device agnostic code
|
245 |
+
if torch.cuda.is_available():
|
246 |
+
device = "cuda"
|
247 |
+
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
|
248 |
+
device = "mps"
|
249 |
+
else:
|
250 |
+
device = "cpu"
|
251 |
+
|
252 |
+
print(f"[INFO] Using device: {device}")
|
253 |
|
254 |
+
|
255 |
+
def array_to_image_path(image_array):
|
256 |
+
if image_array is None:
|
257 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
258 |
+
# Convert numpy array to PIL Image
|
259 |
+
img = Image.fromarray(np.uint8(image_array))
|
260 |
+
|
261 |
+
# Generate a unique filename using timestamp
|
262 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
263 |
+
filename = f"image_{timestamp}.png"
|
264 |
+
|
265 |
+
# Save the image
|
266 |
+
img.save(filename)
|
267 |
+
|
268 |
+
# Get the full path of the saved image
|
269 |
+
full_path = os.path.abspath(filename)
|
270 |
+
|
271 |
+
return full_path
|
272 |
+
|
273 |
+
models = {
|
274 |
+
"Fancy-MLLM/R1-OneVision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-OneVision-7B",
|
275 |
+
trust_remote_code=True,
|
276 |
+
torch_dtype="auto",
|
277 |
+
device_map="auto").eval(),
|
278 |
+
}
|
279 |
+
|
280 |
+
processors = {
|
281 |
+
"Fancy-MLLM/R1-OneVision-7B": AutoProcessor.from_pretrained("Fancy-MLLM/R1-OneVision-7B", trust_remote_code=True),
|
282 |
+
}
|
283 |
+
|
284 |
+
DESCRIPTION = "[🦖 Fancy-MLLM/R1-OneVision-7B Demo]"
|
285 |
+
|
286 |
+
kwargs = {}
|
287 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
288 |
+
|
289 |
+
user_prompt = '<|user|>\n'
|
290 |
+
assistant_prompt = '<|assistant|>\n'
|
291 |
+
prompt_suffix = "<|end|>\n"
|
292 |
+
|
293 |
+
@spaces.GPU
|
294 |
+
def run_example(image, text_input=None, model_id=None):
|
295 |
+
start_time = time.time()
|
296 |
+
image_path = array_to_image_path(image)
|
297 |
+
|
298 |
+
print(image_path)
|
299 |
+
model = models[model_id]
|
300 |
+
processor = processors[model_id]
|
301 |
+
|
302 |
+
image = Image.fromarray(image).convert("RGB")
|
303 |
messages = [
|
304 |
+
{
|
305 |
"role": "user",
|
306 |
"content": [
|
307 |
+
{
|
308 |
+
"type": "image",
|
309 |
+
"image": image_path,
|
310 |
+
},
|
311 |
+
{"type": "text", "text": text_input},
|
312 |
],
|
313 |
}
|
314 |
]
|
315 |
+
|
316 |
+
# Preparation for inference
|
317 |
+
text = processor.apply_chat_template(
|
318 |
+
messages, tokenize=False, add_generation_prompt=True
|
319 |
+
)
|
320 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
321 |
inputs = processor(
|
322 |
+
text=[text],
|
323 |
+
images=image_inputs,
|
324 |
+
videos=video_inputs,
|
325 |
padding=True,
|
326 |
+
return_tensors="pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
)
|
328 |
+
inputs = inputs.to(device)
|
329 |
|
330 |
+
# Inference: Generation of the output
|
331 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2048)
|
332 |
+
generated_ids_trimmed = [
|
333 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
334 |
+
]
|
335 |
+
output_text = processor.batch_decode(
|
336 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
337 |
+
)
|
338 |
+
|
339 |
+
end_time = time.time()
|
340 |
+
total_time = round(end_time - start_time, 2)
|
341 |
|
342 |
+
return output_text[0], total_time
|
343 |
+
|
344 |
+
css = """
|
345 |
+
#output {
|
346 |
+
height: 500px;
|
347 |
+
overflow: auto;
|
348 |
+
border: 1px solid #ccc;
|
349 |
+
}
|
350 |
+
"""
|
351 |
+
|
352 |
+
with gr.Blocks(css=css) as demo:
|
353 |
+
gr.Markdown(DESCRIPTION)
|
354 |
+
with gr.Tab(label="R1-OneVision-7B Input"):
|
355 |
+
with gr.Row():
|
356 |
+
with gr.Column():
|
357 |
+
input_img = gr.Image(label="Input Picture")
|
358 |
+
model_selector = gr.Dropdown(choices=list(models.keys()),
|
359 |
+
label="Model",
|
360 |
+
value="Fancy-MLLM/R1-OneVision-7B")
|
361 |
+
text_input = gr.Textbox(label="Text Prompt")
|
362 |
+
submit_btn = gr.Button(value="Submit")
|
363 |
+
with gr.Column():
|
364 |
+
output_text = gr.Textbox(label="Output Text")
|
365 |
+
time_taken = gr.Textbox(label="Time taken for processing + inference")
|
366 |
+
|
367 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text, time_taken])
|
368 |
|
369 |
+
demo.queue(api_open=False)
|
370 |
demo.launch(debug=True)
|
371 |
|