|
|
|
|
|
|
|
from PIL import Image |
|
from einops import rearrange |
|
import torch |
|
from diffusers.pipelines.flux.pipeline_flux import * |
|
from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor |
|
|
|
from models.attn_processor import FluxIPAttnProcessor |
|
from models.resampler import CrossLayerCrossScaleProjector |
|
from models.utils import flux_load_lora |
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import FluxPipeline |
|
|
|
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) |
|
>>> pipe.to("cuda") |
|
>>> prompt = "A cat holding a sign that says hello world" |
|
>>> # Depending on the variant being used, the pipeline call will slightly vary. |
|
>>> # Refer to the pipeline documentation for more details. |
|
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] |
|
>>> image.save("flux.png") |
|
``` |
|
""" |
|
|
|
|
|
class InstantCharacterFluxPipeline(FluxPipeline): |
|
|
|
|
|
@torch.no_grad() |
|
def encode_siglip_image_emb(self, siglip_image, device, dtype): |
|
siglip_image = siglip_image.to(device, dtype=dtype) |
|
res = self.siglip_image_encoder(siglip_image, output_hidden_states=True) |
|
|
|
siglip_image_embeds = res.last_hidden_state |
|
|
|
siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1) |
|
|
|
return siglip_image_embeds, siglip_image_shallow_embeds |
|
|
|
|
|
@torch.no_grad() |
|
def encode_dinov2_image_emb(self, dinov2_image, device, dtype): |
|
dinov2_image = dinov2_image.to(device, dtype=dtype) |
|
res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True) |
|
|
|
dinov2_image_embeds = res.last_hidden_state[:, 1:] |
|
|
|
dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1) |
|
|
|
return dinov2_image_embeds, dinov2_image_shallow_embeds |
|
|
|
|
|
@torch.no_grad() |
|
def encode_image_emb(self, siglip_image, device, dtype): |
|
object_image_pil = siglip_image |
|
object_image_pil_low_res = [object_image_pil.resize((384, 384))] |
|
object_image_pil_high_res = object_image_pil.resize((768, 768)) |
|
object_image_pil_high_res = [ |
|
object_image_pil_high_res.crop((0, 0, 384, 384)), |
|
object_image_pil_high_res.crop((384, 0, 768, 384)), |
|
object_image_pil_high_res.crop((0, 384, 384, 768)), |
|
object_image_pil_high_res.crop((384, 384, 768, 768)), |
|
] |
|
nb_split_image = len(object_image_pil_high_res) |
|
|
|
siglip_image_embeds = self.encode_siglip_image_emb( |
|
self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values, |
|
device, |
|
dtype |
|
) |
|
dinov2_image_embeds = self.encode_dinov2_image_emb( |
|
self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values, |
|
device, |
|
dtype |
|
) |
|
|
|
image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2) |
|
image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2) |
|
|
|
siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values |
|
siglip_image_high_res = siglip_image_high_res[None] |
|
siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w') |
|
siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype) |
|
siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) |
|
dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values |
|
dinov2_image_high_res = dinov2_image_high_res[None] |
|
dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w') |
|
dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype) |
|
dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) |
|
image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2) |
|
|
|
image_embeds_dict = dict( |
|
image_embeds_low_res_shallow=image_embeds_low_res_shallow, |
|
image_embeds_low_res_deep=image_embeds_low_res_deep, |
|
image_embeds_high_res_deep=image_embeds_high_res_deep, |
|
) |
|
return image_embeds_dict |
|
|
|
|
|
@torch.no_grad() |
|
def init_ccp_and_attn_processor(self, *args, **kwargs): |
|
subject_ip_adapter_path = kwargs['subject_ip_adapter_path'] |
|
nb_token = kwargs['nb_token'] |
|
state_dict = torch.load(subject_ip_adapter_path, map_location="cpu") |
|
device, dtype = self.transformer.device, self.transformer.dtype |
|
|
|
print(f"=> init attn processor") |
|
attn_procs = {} |
|
for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()): |
|
attn_procs[name] = FluxIPAttnProcessor( |
|
hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads, |
|
ip_hidden_states_dim=self.text_encoder_2.config.d_model, |
|
).to(device, dtype=dtype) |
|
self.transformer.set_attn_processor(attn_procs) |
|
tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values()) |
|
key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
print(f"=> load attn processor: {key_name}") |
|
|
|
print(f"=> init project") |
|
image_proj_model = CrossLayerCrossScaleProjector( |
|
inner_dim=1152 + 1536, |
|
num_attention_heads=42, |
|
attention_head_dim=64, |
|
cross_attention_dim=1152 + 1536, |
|
num_layers=4, |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=nb_token, |
|
embedding_dim=1152 + 1536, |
|
output_dim=4096, |
|
ff_mult=4, |
|
timestep_in_dim=320, |
|
timestep_flip_sin_to_cos=True, |
|
timestep_freq_shift=0, |
|
) |
|
image_proj_model.eval() |
|
image_proj_model.to(device, dtype=dtype) |
|
|
|
key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False) |
|
print(f"=> load project: {key_name}") |
|
self.subject_image_proj_model = image_proj_model |
|
|
|
|
|
@torch.no_grad() |
|
def init_adapter( |
|
self, |
|
image_encoder_path=None, |
|
image_encoder_2_path=None, |
|
subject_ipadapter_cfg=None, |
|
): |
|
device, dtype = self.transformer.device, self.transformer.dtype |
|
|
|
|
|
print(f"=> loading image_encoder_1: {image_encoder_path}") |
|
image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path) |
|
image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path) |
|
image_encoder.eval() |
|
image_encoder.to(device, dtype=dtype) |
|
self.siglip_image_encoder = image_encoder |
|
self.siglip_image_processor = image_processor |
|
|
|
|
|
print(f"=> loading image_encoder_2: {image_encoder_2_path}") |
|
image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path) |
|
image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path) |
|
image_encoder_2.eval() |
|
image_encoder_2.to(device, dtype=dtype) |
|
image_processor_2.crop_size = dict(height=384, width=384) |
|
image_processor_2.size = dict(shortest_edge=384) |
|
self.dino_image_encoder_2 = image_encoder_2 |
|
self.dino_image_processor_2 = image_processor_2 |
|
|
|
|
|
self.init_ccp_and_attn_processor(**subject_ipadapter_cfg) |
|
|
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
true_cfg_scale: float = 1.0, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_ip_adapter_image: Optional[PipelineImageInput] = None, |
|
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
subject_image: Image.Image = None, |
|
subject_scale: float = 0.8, |
|
|
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
negative_ip_adapter_image: |
|
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
dtype = self.transformer.dtype |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
if do_true_cfg: |
|
( |
|
negative_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
_, |
|
) = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
if subject_image is not None: |
|
subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size))) |
|
subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( |
|
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None |
|
): |
|
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( |
|
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None |
|
): |
|
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {} |
|
|
|
image_embeds = None |
|
negative_image_embeds = None |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: |
|
negative_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
negative_ip_adapter_image, |
|
negative_ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
if image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
|
|
|
|
if subject_image is not None: |
|
subject_image_prompt_embeds = self.subject_image_proj_model( |
|
low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'], |
|
low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'], |
|
high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'], |
|
timesteps=timestep.to(dtype=latents.dtype), |
|
need_temb=True |
|
)[0] |
|
self._joint_attention_kwargs['emb_dict'] = dict( |
|
length_encoder_hidden_states=prompt_embeds.shape[1] |
|
) |
|
self._joint_attention_kwargs['subject_emb_dict'] = dict( |
|
ip_hidden_states=subject_image_prompt_embeds, |
|
scale=subject_scale, |
|
) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_true_cfg: |
|
if negative_image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds |
|
neg_noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=negative_pooled_prompt_embeds, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
|
|
def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs): |
|
flux_load_lora(self, lora_file_path, lora_weight) |
|
kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}" |
|
res = self.__call__(*args, **kwargs) |
|
flux_load_lora(self, lora_file_path, -lora_weight) |
|
return res |
|
|
|
|