Spaces:
Sleeping
Sleeping
added changes to app.py and model.py
Browse files- app.py +5 -5
- model.py +15 -15
- requirements.txt +2 -0
app.py
CHANGED
@@ -2,20 +2,20 @@ import gradio as gr
|
|
2 |
from PIL import Image
|
3 |
import cv2
|
4 |
from ultralytics import YOLO
|
|
|
|
|
5 |
|
6 |
-
# Load model (ensure the path to the weights file is correct)
|
7 |
model_path = "car_logos.pt"
|
8 |
detection_model = YOLO(model_path)
|
9 |
|
10 |
def predict_image(pil_image):
|
11 |
"""Process an image and return the annotated image."""
|
12 |
-
|
13 |
frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
14 |
|
15 |
-
|
16 |
results = detection_model.predict(frame, conf=0.5, iou=0.6)
|
17 |
|
18 |
-
# Annotate the image
|
19 |
annotated_frame = results[0].plot()
|
20 |
|
21 |
|
@@ -59,7 +59,7 @@ def create_gradio_interface():
|
|
59 |
image_button = gr.Button("Process Image")
|
60 |
image_button.click(fn=predict_image, inputs=image_input, outputs=image_output)
|
61 |
|
62 |
-
with gr.Tab("Video Upload"):
|
63 |
gr.Markdown("### Upload a Video for Object Detection")
|
64 |
video_input = gr.Video(label="Input Video")
|
65 |
video_output = gr.File(label="Annotated Video")
|
|
|
2 |
from PIL import Image
|
3 |
import cv2
|
4 |
from ultralytics import YOLO
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
|
|
|
8 |
model_path = "car_logos.pt"
|
9 |
detection_model = YOLO(model_path)
|
10 |
|
11 |
def predict_image(pil_image):
|
12 |
"""Process an image and return the annotated image."""
|
13 |
+
|
14 |
frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
15 |
|
16 |
+
|
17 |
results = detection_model.predict(frame, conf=0.5, iou=0.6)
|
18 |
|
|
|
19 |
annotated_frame = results[0].plot()
|
20 |
|
21 |
|
|
|
59 |
image_button = gr.Button("Process Image")
|
60 |
image_button.click(fn=predict_image, inputs=image_input, outputs=image_output)
|
61 |
|
62 |
+
with gr.Tab("Video Upload for Toyota and Honda logo detection"):
|
63 |
gr.Markdown("### Upload a Video for Object Detection")
|
64 |
video_input = gr.Video(label="Input Video")
|
65 |
video_output = gr.File(label="Annotated Video")
|
model.py
CHANGED
@@ -14,21 +14,21 @@ settings.update({"wandb": True,
|
|
14 |
|
15 |
|
16 |
model = YOLO("yolov8s.pt")
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
model = YOLO("
|
32 |
validation_results = model.val(data="220180T_carlogos.v5i.yolov8-obb/data.yaml", device="cpu")
|
33 |
|
34 |
model.save("car_logos.pt")
|
|
|
14 |
|
15 |
|
16 |
model = YOLO("yolov8s.pt")
|
17 |
+
result = model.train(data="220180T_carlogos-5/data.yaml",
|
18 |
+
epochs=30,
|
19 |
+
save_period=1,
|
20 |
+
batch=50,
|
21 |
+
device= "cpu",
|
22 |
+
project='Car-Logos',
|
23 |
+
plots=True,
|
24 |
+
freeze=5,
|
25 |
+
lr0= 1e-7,
|
26 |
+
optimizer = "Adam" ,
|
27 |
+
cls = 0.1,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
model = YOLO("car_logos.pt")
|
32 |
validation_results = model.val(data="220180T_carlogos.v5i.yolov8-obb/data.yaml", device="cpu")
|
33 |
|
34 |
model.save("car_logos.pt")
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
ultralytics
|
2 |
huggingface_hub
|
|
|
|
|
|
1 |
ultralytics
|
2 |
huggingface_hub
|
3 |
+
wandb
|
4 |
+
roboflow
|