Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,16 +24,7 @@ def predict_image(input_image):
|
|
24 |
img_bgr = result[0].plot()
|
25 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
26 |
output_image = Image.fromarray(img_rgb) # Use the RGB image for output
|
27 |
-
|
28 |
-
# Get the original filename (without path)
|
29 |
-
original_filename = os.path.basename(input_image.name)
|
30 |
-
|
31 |
-
# Get the name without the extension and append '_detected'
|
32 |
-
base_filename, _ = os.path.splitext(original_filename)
|
33 |
-
output_image_jpg = base_filename + "_detected.jpg"
|
34 |
-
output_image.save(output_image_jpg, "JPEG")
|
35 |
-
|
36 |
-
return output_image_jpg # Return path to saved JPG image
|
37 |
|
38 |
# Video prediction function
|
39 |
def predict_video(input_video):
|
@@ -83,8 +74,8 @@ with gr.Blocks() as app:
|
|
83 |
with gr.Tabs():
|
84 |
with gr.Tab("Image Detection"):
|
85 |
gr.Interface(fn=predict_image,
|
86 |
-
inputs=gr.
|
87 |
-
outputs=gr.
|
88 |
title="Image Object Detection",
|
89 |
description="Upload an image to detect Wildebeest and/or Hyena.")
|
90 |
|
|
|
24 |
img_bgr = result[0].plot()
|
25 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
26 |
output_image = Image.fromarray(img_rgb) # Use the RGB image for output
|
27 |
+
return output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Video prediction function
|
30 |
def predict_video(input_video):
|
|
|
74 |
with gr.Tabs():
|
75 |
with gr.Tab("Image Detection"):
|
76 |
gr.Interface(fn=predict_image,
|
77 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
78 |
+
outputs=gr.Image(type="pil", label="Download Image"),
|
79 |
title="Image Object Detection",
|
80 |
description="Upload an image to detect Wildebeest and/or Hyena.")
|
81 |
|