4183940K / app.py
kks24's picture
Update app.py
c18b324 verified
from ultralytics import YOLO
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
import tempfile
def load_model(repo_id):
download_dir = snapshot_download(repo_id)
print(download_dir)
path = os.path.join(download_dir, "best_int8_openvino_model")
print(path)
detection_model = YOLO(path, task='detect')
return detection_model
def predict_image(pilimg):
source = pilimg
# x = np.asarray(pilimg)
# print(x.shape)
result = detection_model.predict(source, conf=0.5, iou=0.6)
img_bgr = result[0].plot()
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
return out_pilimg
def predict_video(video_file):
cap = cv2.VideoCapture(video_file)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
temp_video_path = temp_video.name
writer = cv2.VideoWriter(temp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = detection_model.predict(frame, conf=0.5, iou=0.6)
annotated_frame = results[0].plot()
writer.write(annotated_frame)
cap.release()
writer.release()
return temp_video_path
REPO_ID = "kks24/highlighter-pen-post-it-notes"
detection_model = load_model(REPO_ID)
with gr.Blocks() as app:
gr.Markdown("Highlighter Pen & Post-it Notes Detector - 4183940K")
gr.Markdown("Upload an image or a video to detect Highlighter Pen & Post-it Notes")
with gr.Tabs():
with gr.Tab("Image Object Detection"):
gr.Markdown("### Upload an Image to detect Highlighter Pen & Post-it Notes")
img_input = gr.Image(type="pil", label="Upload Image")
img_output = gr.Image(type="pil", label="Download Image")
img_button = gr.Button("Process Image")
img_button.click(predict_image, inputs=img_input, outputs=img_output)
with gr.Tab("Video Object Detection"):
gr.Markdown("### Upload a video to detect Highlighter Pen & Post-it Notes. You can download the processed video after detection.")
video_input = gr.Video(label="Upload Video")
video_output = gr.File(label="Download Processed Video") # File download component
process_button = gr.Button("Process Video")
process_button.click(predict_video, inputs=video_input, outputs=video_output)
app.launch(share=True)