Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,63 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
from torchvision.ops import nms
|
5 |
-
from PIL import Image
|
6 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Preprocess the image
|
16 |
-
image_resized = Image.fromarray(image).resize((640, 640))
|
17 |
-
input_tensor = torch.from_numpy(np.array(image_resized).transpose(2, 0, 1) / 255.0).unsqueeze(0).float()
|
18 |
-
|
19 |
-
# Run inference
|
20 |
-
output = model(input_tensor)
|
21 |
-
detection_data = output[0][0].detach().numpy() # Remove batch dimension
|
22 |
-
|
23 |
-
# Filter detections by confidence threshold
|
24 |
-
filtered_detections = detection_data[detection_data[:, 4] >= 0.5]
|
25 |
-
# Define class names
|
26 |
-
class_names = ["plate", "taxi"]
|
27 |
-
|
28 |
-
# Prepare boxes for NMS
|
29 |
-
boxes = []
|
30 |
-
confidences = []
|
31 |
-
labels = []
|
32 |
-
for detection in filtered_detections:
|
33 |
-
if len(detection) < 7: # Ensure detection has enough elements
|
34 |
-
continue
|
35 |
-
x_center, y_center, width, height = detection[:4]
|
36 |
-
confidence = detection[4]
|
37 |
-
print(confidence)
|
38 |
-
class_probs = detection[5:] # Probabilities for all classes
|
39 |
-
|
40 |
-
# Get the predicted class by finding the max probability index
|
41 |
-
class_index = np.argmax(class_probs)
|
42 |
-
class_label = class_names[class_index]
|
43 |
-
print(class_label)
|
44 |
-
|
45 |
-
x_min = int(x_center - width / 2.2)
|
46 |
-
y_min = int(y_center - height / 2.2)
|
47 |
-
x_max = int(x_center + width / 2.2)
|
48 |
-
y_max = int(y_center + height / 2.2)
|
49 |
-
|
50 |
-
boxes.append([x_min, y_min, x_max, y_max])
|
51 |
-
confidences.append(confidence)
|
52 |
-
labels.append(class_label)
|
53 |
-
|
54 |
-
if not boxes: # No valid boxes
|
55 |
-
raise ValueError("No detections.")
|
56 |
-
|
57 |
-
boxes_tensor = torch.tensor(boxes, dtype=torch.float32)
|
58 |
-
scores_tensor = torch.tensor(confidences, dtype=torch.float32)
|
59 |
-
|
60 |
-
# Apply NMS
|
61 |
-
iou_threshold = 0.5
|
62 |
-
nms_indices = nms(boxes_tensor, scores_tensor, iou_threshold)
|
63 |
-
nms_boxes = boxes_tensor[nms_indices].tolist()
|
64 |
-
nms_labels = [labels[i] for i in nms_indices]
|
65 |
-
|
66 |
-
# Draw bounding boxes
|
67 |
-
image_with_boxes = image.copy()
|
68 |
-
for i, box in enumerate(nms_boxes):
|
69 |
-
x_min, y_min, x_max, y_max = map(int, box)
|
70 |
-
label = nms_labels[i]
|
71 |
-
cv2.rectangle(image_with_boxes, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
|
72 |
-
cv2.putText(image_with_boxes, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
73 |
-
|
74 |
-
return image_with_boxes
|
75 |
-
|
76 |
-
except Exception as e:
|
77 |
-
print(f"Error: {str(e)}")
|
78 |
-
# Return error as text overlay on the image
|
79 |
-
image_with_error = image.copy()
|
80 |
-
cv2.putText(image_with_error, f"Error: {str(e)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
81 |
-
return image_with_error
|
82 |
-
|
83 |
-
# Define the Gradio interface
|
84 |
-
interface = gr.Interface(
|
85 |
-
fn=detect_taxi_plate,
|
86 |
-
inputs=gr.Image(type="numpy", label="Upload Image"),
|
87 |
-
outputs=gr.Image(type="numpy", label="Output Image"),
|
88 |
-
title="ITI107 Assignment: Taxi & License Plate Detection",
|
89 |
-
description="Admin Number: 4744695Y\n\nUpload an image to detect if a Taxi and/or License Plate is present."
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
3 |
import cv2
|
4 |
+
import os
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
# Load the YOLO model
|
8 |
+
model = YOLO('best.pt')
|
9 |
+
|
10 |
+
# Function for image processing
|
11 |
+
def show_preds_image(image_path):
|
12 |
+
image = cv2.imread(image_path)
|
13 |
+
results = model.predict(source=image_path)
|
14 |
+
annotated_image = results[0].plot()
|
15 |
+
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
16 |
+
|
17 |
+
# Function for video processing
|
18 |
+
def show_preds_video(video_path):
|
19 |
+
cap = cv2.VideoCapture(video_path)
|
20 |
+
out_frames = []
|
21 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
22 |
+
while cap.isOpened():
|
23 |
+
ret, frame = cap.read()
|
24 |
+
if not ret:
|
25 |
+
break
|
26 |
+
results = model.predict(source=frame)
|
27 |
+
annotated_frame = results[0].plot()
|
28 |
+
out_frames.append(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
29 |
+
cap.release()
|
30 |
+
|
31 |
+
# Save the annotated video
|
32 |
+
output_path = "annotated_video.mp4"
|
33 |
+
height, width, _ = out_frames[0].shape
|
34 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
35 |
+
writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
36 |
+
for frame in out_frames:
|
37 |
+
writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
38 |
+
writer.release()
|
39 |
+
return output_path
|
40 |
+
|
41 |
+
# Gradio interfaces
|
42 |
+
inputs_image = gr.Image(type="filepath", label="Input Image")
|
43 |
+
outputs_image = gr.Image(type="numpy", label="Output Image")
|
44 |
+
interface_image = gr.Interface(
|
45 |
+
fn=show_preds_image,
|
46 |
+
inputs=inputs_image,
|
47 |
+
outputs=outputs_image,
|
48 |
+
title="Taxi & License Plate Detection with Image"
|
49 |
+
)
|
50 |
|
51 |
+
inputs_video = gr.Video(label="Input Video")
|
52 |
+
outputs_video = gr.Video(label="Annotated Output")
|
53 |
+
interface_video = gr.Interface(
|
54 |
+
fn=show_preds_video,
|
55 |
+
inputs=inputs_video,
|
56 |
+
outputs=outputs_video,
|
57 |
+
title="Taxi & License Plate Detection with Video"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
|
60 |
+
gr.TabbedInterface(
|
61 |
+
[interface_image, interface_video],
|
62 |
+
tab_names=['Image Inference', 'Video Inference']
|
63 |
+
).launch(share=True)
|