#import gradio as gr #from ultralytics import YOLO #def greet(name): # return "Hello " + name + "!!" #demo = gr.Interface(fn=greet, inputs="text", outputs="text") #demo.launch() from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os model_path = "best_int8_openvino_model" def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") print(path) detection_model = YOLO(path, task='detect') return detection_model def predict(pilimg): source = pilimg # x = np.asarray(pilimg) # print(x.shape) result = detection_model.predict(source, conf=0.5, iou=0.6) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg REPO_ID = "ITI107-2024S2/6304871K" detection_model = load_model(REPO_ID) title = "Detection of Pineapple and Sweet Potato in uploaded Image" gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title=title, ).launch(share=True)