#!/usr/bin/env python # coding: utf-8 # In[ ]: from ultralytics import YOLO from PIL import Image, ImageDraw, ImageFont import gradio as gr from huggingface_hub import snapshot_download import os import numpy as np # Best Yolov8 trained model best_yolo_model = "best.pt" def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") print(path) detection_model = YOLO(path, task='detect') return detection_model def predict(pilimg): detection_model = YOLO(best_yolo_model, task='detect') result = detection_model.predict(pilimg, conf=0.4, iou=0.5) #result = detection_model.predict(pilimg) obb = result[0].obb confs = obb.conf #print("obb : ", obb) #print( confidence : ", confs) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image # Show warning if no object is detected if len(result[0].obb.cls) == 0: gr.Warning("No object detected!") return out_pilimg REPO_ID = "ITI107-2024S2/8035531F" #detection_model = load_model(REPO_ID) title = "Detect Durian and Mangosteen (King and Queen of Fruits) In The Image" interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Input Image"), outputs=gr.Image(type="pil", label="Object Detection With Confidence Level"), title=title, ) # Launch the interface interface.launch(share=True) # In[ ]: