from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os #model_path = "RRR_OpenVino" def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) path = os.path.join(download_dir, "RRR_OpenVino") print(path) detection_model = YOLO(path, task='detect') return detection_model def predict(pilimg): source = pilimg # x = np.asarray(pilimg) # print(x.shape) result = detection_model.predict(source, conf=0.5, iou=0.6) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg REPO_ID = "Sathyadithyarithi/RRR_detection" detection_model = load_model(REPO_ID) gr.Interface(fn=predict, inputs=gr.Image(type="pil",label="Upload Image from RRR"), outputs=gr.Image(type="pil", label="Model Detected Image for Charan and NTR"), title="Object Detection App-RRR Movie Charan and NTR", description="Upload an image to detect objects in the image.", ).launch(share=True)