File size: 27,324 Bytes
5073484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf76c48
5073484
7290453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5073484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7290453
 
5073484
 
 
 
 
 
7290453
5073484
7290453
5073484
 
 
 
 
7290453
5073484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# %%capture
# # Run this cell in your local environment to install necessary packages
# # Added chromadb, removed scikit-learn (numpy might still be needed by other libs)
# !pip install gradio langchain langchain-community sentence-transformers ctransformers torch accelerate bitsandbytes chromadb transformers[sentencepiece]

import gradio as gr
from langchain_community.vectorstores import Chroma # ADDED
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import CTransformers
from langchain.schema import Document
from langchain.prompts import PromptTemplate
import json
import os
# REMOVED: import numpy as np
import re
# REMOVED: from sklearn.metrics.pairwise import cosine_similarity
import chromadb # ADDED for client check
from typing import List, Dict, Any, Optional
from huggingface_hub import hf_hub_download # Import the downloader

# --- Constants ---
MODEL_REPO = "TheBloke/zephyr-7B-beta-GGUF"
MODEL_FILE = "zephyr-7b-beta.Q4_K_M.gguf"
# Define a path within the persistent storage for the model
# Using os.environ.get('HF_HOME', '/data') ensures it uses HF_HOME if set,
# otherwise defaults to /data. You might want a specific models subdir.
# Let's create a dedicated model path within /data:
MODEL_DIR = "/data/models" # Store models in /data/models
LOCAL_MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILE)

# --- Function to Download Model (Runtime Check) ---
def download_model_if_needed():
    """Checks if model exists in persistent storage, downloads if not."""
    print(f"Checking for model file at: {LOCAL_MODEL_PATH}")
    if not os.path.exists(LOCAL_MODEL_PATH):
        print(f"Model not found locally. Downloading from {MODEL_REPO}...")
        try:
            # Create the directory if it doesn't exist
            os.makedirs(MODEL_DIR, exist_ok=True)
            # Use hf_hub_download for robust downloading & caching (respects HF_HOME)
            # We specify local_dir to force it into our /data structure,
            # and local_dir_use_symlinks=False to avoid symlinks if that causes issues.
            # If you set HF_HOME=/data in Dockerfile, it *should* cache there by default,
            # but explicitly downloading to a specific path within /data is safer.
            hf_hub_download(
                repo_id=MODEL_REPO,
                filename=MODEL_FILE,
                local_dir=MODEL_DIR, # Download directly into this folder
                local_dir_use_symlinks=False, # Avoid symlinks, copy directly
                # cache_dir=os.environ.get('HF_HOME') # Optional: force cache dir if needed
            )
            # Verify download
            if os.path.exists(LOCAL_MODEL_PATH):
                 print(f"Model downloaded successfully to {LOCAL_MODEL_PATH}")
            else:
                 print(f"Download attempted but file still not found at {LOCAL_MODEL_PATH}. Check download path and permissions.")
                 # Consider raising an error or exiting if download fails critically
                 raise FileNotFoundError("Model download failed.")

        except Exception as e:
            print(f"Error downloading model: {e}")
            # Handle error appropriately - maybe exit or try fallback
            raise # Re-raise the exception to stop execution if model is critical
    else:
        print("Model file already exists locally.")

# --- Call the download function at the start ---
try:
    download_model_if_needed()
except Exception as e:
    print(f"Failed to ensure model availability: {e}")
    exit() # Exit if model download fails and is required



# --- Load Structured Resume Data ---
resume_filename = "resume_corrected.json" # Using the revamped JSON
resume_data = {}
try:
    with open(resume_filename, 'r', encoding='utf-8') as f:
        resume_data = json.load(f)
    print(f"Loaded structured resume data from {resume_filename}")
    if not isinstance(resume_data, dict):
        print(f"Error: Content of {resume_filename} is not a dictionary.")
        resume_data = {}
except FileNotFoundError:
    print(f"Error: Resume data file '{resume_filename}' not found.")
    print("Ensure the revamped JSON file is present.")
    exit()
except json.JSONDecodeError as e:
    print(f"Error decoding JSON from {resume_filename}: {e}")
    exit()
except Exception as e:
    print(f"An unexpected error occurred loading resume data: {e}")
    exit()

if not resume_data:
    print("Error: No resume data loaded. Exiting.")
    exit()

# --- Function to Sanitize Metadata ---
# --- Helper Function to Sanitize Metadata ---
def sanitize_metadata(metadata_dict: Dict[str, Any]) -> Dict[str, Any]:
    """Ensures metadata values are compatible types for ChromaDB."""
    sanitized = {}
    if not isinstance(metadata_dict, dict):
        return {} # Return empty if input is not a dict
    for k, v in metadata_dict.items():
        # Ensure key is string
        key_str = str(k)
        if isinstance(v, (str, int, float, bool)):
            sanitized[key_str] = v
        elif isinstance(v, (list, set)): # Convert lists/sets to string
            sanitized[key_str] = "; ".join(map(str, v))
        elif v is None:
            sanitized[key_str] = "N/A" # Or ""
        else:
            sanitized[key_str] = str(v) # Convert other types to string
    return sanitized


# --- Create Granular LangChain Documents from Structured Data ---
# (This entire section remains unchanged as requested)
structured_docs = []
doc_id_counter = 0
print("Processing structured data into granular documents...")
# --- Start of Unchanged Document Creation Logic ---
contact_info = resume_data.get("CONTACT INFO", {})
if contact_info:
    contact_text = f"Contact Info: Phone: {contact_info.get('phone', 'N/A')}, Location: {contact_info.get('location', 'N/A')}, Email: {contact_info.get('email', 'N/A')}, GitHub: {contact_info.get('github_user', 'N/A')}, LinkedIn: {contact_info.get('linkedin_user', 'N/A')}"
    metadata = {"category": "CONTACT INFO", "source_doc_id": str(doc_id_counter)} # Ensure ID is string
    structured_docs.append(Document(page_content=contact_text, metadata=metadata))
    doc_id_counter += 1

education_list = resume_data.get("EDUCATION", [])
for i, entry in enumerate(education_list):
    edu_text = f"Education: {entry.get('degree', '')} in {entry.get('major', '')} from {entry.get('institution', '')} ({entry.get('dates', '')})."
    metadata = {
        "category": "EDUCATION",
        "institution": entry.get('institution', 'N/A'), # Ensure N/A or actual string
        "degree": entry.get('degree', 'N/A'),
        "major": entry.get('major', 'N/A'),
        "dates": entry.get('dates', 'N/A'),
        "item_index": i,
        "source_doc_id": str(doc_id_counter) # Ensure ID is string
    }
    # Ensure all metadata values are strings, ints, floats, or bools
    metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()}
    structured_docs.append(Document(page_content=edu_text.strip(), metadata=metadata))
    doc_id_counter += 1

tech_strengths = resume_data.get("TECHNICAL STRENGTHS", {})
for sub_category, skills in tech_strengths.items():
    if isinstance(skills, list) and skills:
        skills_text = f"Technical Strengths - {sub_category}: {', '.join(skills)}"
        metadata = {"category": "TECHNICAL STRENGTHS", "sub_category": sub_category, "source_doc_id": str(doc_id_counter)}
        metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()}
        structured_docs.append(Document(page_content=skills_text, metadata=metadata))
        doc_id_counter += 1

# Process WORK EXPERIENCE (Using relevant_skills)
work_list = resume_data.get("WORK EXPERIENCE", [])
for i, entry in enumerate(work_list):
    title = entry.get('title', 'N/A')
    org = entry.get('organization', 'N/A')
    dates = entry.get('dates', 'N/A')
    points = entry.get('description_points', [])
    # --- MODIFICATION START ---
    skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
    skills_str = "; ".join(skills_list) if skills_list else "N/A"
    # --- MODIFICATION END ---
    entry_context = f"Work Experience: {title} at {org} ({dates})"

    if not points:
        base_metadata = {
            "category": "WORK EXPERIENCE", "title": title, "organization": org,
            "dates": dates, "item_index": i, "point_index": -1,
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        doc_id_counter += 1
    else:
        # Create one doc for the header/context info
        base_metadata = {
            "category": "WORK EXPERIENCE", "title": title, "organization": org,
            "dates": dates, "item_index": i, "point_index": -1, # Indicate context doc
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        # Create separate docs for each point, inheriting skills
        for j, point in enumerate(points):
            point_text = f"{entry_context}:\n- {point.strip()}"
            point_metadata = {
                "category": "WORK EXPERIENCE", "title": title, "organization": org,
                "dates": dates, "item_index": i, "point_index": j,
                "source_doc_id": str(doc_id_counter), # Link back to original entry ID
                "skills": skills_str # --- ADDED SKILLS ---
            }
            structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
        doc_id_counter += 1 # Increment ID only once per WORK EXPERIENCE entry

# Process PROJECTS (Using technologies field, mapping to 'skills' metadata key)
project_list = resume_data.get("PROJECTS", [])
for i, entry in enumerate(project_list):
    name = entry.get('name', 'Unnamed Project')
    # --- MODIFICATION START ---
    # Use 'technologies' from JSON for projects, but map to 'skills' metadata key
    skills_list = entry.get('technologies', [])
    skills_str = "; ".join(skills_list) if skills_list else "N/A"
    # --- MODIFICATION END ---
    points = entry.get('description_points', [])
    # Include skills string in context text as well for embedding
    entry_context = f"Project: {name} (Skills: {skills_str if skills_list else 'N/A'})"

    if not points:
        base_metadata = {
            "category": "PROJECTS", "name": name,
            "item_index": i, "point_index": -1,
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED/RENAMED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        doc_id_counter += 1
    else:
         # Create one doc for the header/context info
        base_metadata = {
            "category": "PROJECTS", "name": name,
            "item_index": i, "point_index": -1, # Indicate context doc
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED/RENAMED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        # Create separate docs for each point, inheriting skills
        for j, point in enumerate(points):
            point_text = f"{entry_context}:\n- {point.strip()}"
            point_metadata = {
                "category": "PROJECTS", "name": name,
                "item_index": i, "point_index": j,
                "source_doc_id": str(doc_id_counter),
                "skills": skills_str # --- ADDED/RENAMED SKILLS ---
            }
            structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
        doc_id_counter += 1 # Increment ID only once per PROJECT entry


# Process ONLINE CERTIFICATIONS (Using relevant_skills)
cert_list = resume_data.get("ONLINE CERTIFICATIONS", [])
for i, entry in enumerate(cert_list):
    name = entry.get('name', 'N/A')
    issuer = entry.get('issuer', 'N/A')
    date = entry.get('date', 'N/A')
    points = entry.get('description_points', [])
    # --- MODIFICATION START ---
    skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
    skills_str = "; ".join(skills_list) if skills_list else "N/A"
    # --- MODIFICATION END ---
    entry_context = f"Certification: {name} from {issuer} ({date})"

    if not points:
        base_metadata = {
            "category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
            "date": date, "item_index": i, "point_index": -1,
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        doc_id_counter += 1
    else:
         # Create one doc for the header/context info
        base_metadata = {
            "category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
            "date": date, "item_index": i, "point_index": -1, # Indicate context doc
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        # Create separate docs for each point, inheriting skills
        for j, point in enumerate(points):
            if point.strip().endswith(':'): continue
            point_text = f"{entry_context}:\n- {point.strip().lstrip('–- ')}"
            point_metadata = {
                "category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
                "date": date, "item_index": i, "point_index": j,
                "source_doc_id": str(doc_id_counter),
                "skills": skills_str # --- ADDED SKILLS ---
            }
            structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
        doc_id_counter += 1 # Increment ID only once per CERTIFICATION entry

# Process COURSES (Using relevant_skills)
course_list = resume_data.get("COURSES", [])
for i, entry in enumerate(course_list):
    code = entry.get('code', '')
    name = entry.get('name', 'N/A')
    inst = entry.get('institution', 'N/A')
    term = entry.get('term', 'N/A')
    points = entry.get('description_points', [])
    # --- MODIFICATION START ---
    skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
    skills_str = "; ".join(skills_list) if skills_list else "N/A"
    # --- MODIFICATION END ---
    entry_context = f"Course: {code}: {name} at {inst} ({term})"

    if not points:
        base_metadata = {
            "category": "COURSES", "code": code, "name": name, "institution": inst,
            "term": term, "item_index": i, "point_index": -1,
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        doc_id_counter += 1
    else:
        # Create one doc for the header/context info
        base_metadata = {
            "category": "COURSES", "code": code, "name": name, "institution": inst,
            "term": term, "item_index": i, "point_index": -1, # Indicate context doc
            "source_doc_id": str(doc_id_counter),
            "skills": skills_str # --- ADDED SKILLS ---
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
         # Create separate docs for each point, inheriting skills
        for j, point in enumerate(points):
            point_text = f"{entry_context}:\n- {point.strip()}"
            point_metadata = {
                "category": "COURSES", "code": code, "name": name, "institution": inst,
                "term": term, "item_index": i, "point_index": j,
                "source_doc_id": str(doc_id_counter),
                "skills": skills_str # --- ADDED SKILLS ---
            }
            structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
        doc_id_counter += 1 # Increment ID only once per COURSE entry

# Process EXTRACURRICULAR ACTIVITIES (No skills assumed here)
extra_list = resume_data.get("EXTRACURRICULAR ACTIVITIES", [])
for i, entry in enumerate(extra_list):
    org = entry.get('organization', 'N/A')
    points = entry.get('description_points', [])
    entry_context = f"Extracurricular: {org}"
    if not points:
        metadata = {
            "category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
            "item_index": i, "point_index": -1,
            "source_doc_id": str(doc_id_counter)
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(metadata)))
        doc_id_counter += 1
    else:
         # Create one doc for the header/context info
        base_metadata = {
            "category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
            "item_index": i, "point_index": -1, # Indicate context doc
            "source_doc_id": str(doc_id_counter)
        }
        structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
        # Create separate docs for each point
        for j, point in enumerate(points):
            point_text = f"{entry_context}:\n- {point.strip()}"
            point_metadata = {
                "category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
                "item_index": i, "point_index": j,
                "source_doc_id": str(doc_id_counter)
            }
            structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
        doc_id_counter += 1


if not structured_docs:
    print("Error: Failed to create any documents from the resume data. Check processing logic.")
    exit()

print(f"Created {len(structured_docs)} granular Document objects.")
# Optional: Print a sample document
print("\nSample Document:")
print(structured_docs[0]) # Print first doc as example

# --- Embeddings Model ---
print("Initializing embeddings model...")
embeddings_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
print(f"Embeddings model '{embeddings_model_name}' initialized.")

# --- ChromaDB Vector Store Setup ---
CHROMA_PERSIST_DIR = "/data/cv_chroma_db_structured" # Use a different dir if needed
CHROMA_COLLECTION_NAME = "cv_structured_collection"
print(f"Connecting to ChromaDB client at '{CHROMA_PERSIST_DIR}'...")
client = chromadb.PersistentClient(path=CHROMA_PERSIST_DIR)
vectorstore = None
collection_exists = False
collection_count = 0

try:
    existing_collections = [col.name for col in client.list_collections()]
    if CHROMA_COLLECTION_NAME in existing_collections:
        collection = client.get_collection(name=CHROMA_COLLECTION_NAME)
        collection_count = collection.count()
        if collection_count > 0:
             collection_exists = True
             print(f"Collection '{CHROMA_COLLECTION_NAME}' already exists with {collection_count} documents.")
        else:
             print(f"Collection '{CHROMA_COLLECTION_NAME}' exists but is empty. Will attempt to create/populate.")
             collection_exists = False
             try:
                 client.delete_collection(name=CHROMA_COLLECTION_NAME)
                 print(f"Deleted empty collection '{CHROMA_COLLECTION_NAME}'.")
             except Exception as delete_e:
                 print(f"Warning: Could not delete potentially empty collection '{CHROMA_COLLECTION_NAME}': {delete_e}")
    else: print(f"Collection '{CHROMA_COLLECTION_NAME}' does not exist. Will create.")
except Exception as e:
    print(f"Error checking/preparing ChromaDB collection: {e}. Assuming need to create.")
    collection_exists = False

# Populate Vector Store ONLY IF NEEDED
if not collection_exists:
    print("\nPopulating ChromaDB vector store (this may take a moment)...")
    if not structured_docs:
         print("Error: No documents to add to vector store.")
         exit()
    try:
        vectorstore = Chroma.from_documents(
            documents=structured_docs,
            embedding=embeddings, # Use the initialized embeddings function
            collection_name=CHROMA_COLLECTION_NAME,
            persist_directory=CHROMA_PERSIST_DIR
        )
        vectorstore.persist()
        print("Vector store populated and persisted.")
    except Exception as e:
        print(f"\n--- Error during ChromaDB storage: {e} ---")
        print("Check metadata types (should be str, int, float, bool).")
        exit()
else: # Load existing store
    print(f"\nLoading existing vector store from '{CHROMA_PERSIST_DIR}'...")
    try:
        vectorstore = Chroma(
            persist_directory=CHROMA_PERSIST_DIR,
            embedding_function=embeddings,
            collection_name=CHROMA_COLLECTION_NAME
        )
        print("Existing vector store loaded successfully.")
    except Exception as e:
        print(f"\n--- Error loading existing ChromaDB store: {e} ---")
        exit()

if not vectorstore:
     print("Error: Vector store could not be loaded or created. Exiting.")
     exit()


# --- Load Fine-tuned CTransformers model ---
# (This part remains unchanged)
# model_path_gguf = "/data/zephyr-7b-beta.Q4_K_M.gguf" # MAKE SURE THIS PATH IS CORRECT
print(f"Initializing Fine-Tuned CTransformers LLM from: {LOCAL_MODEL_PATH}")
config = {
    'max_new_tokens': 512, 'temperature': 0.1, 'context_length': 2048,
    'gpu_layers': 0, 'stream': False, 'threads': -1, 'top_k': 40,
    'top_p': 0.9, 'repetition_penalty': 1.1
    }
llm = None
if not os.path.exists(LOCAL_MODEL_PATH):
     print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
     print(f"ERROR: GGUF Model file not found at: {LOCAL_MODEL_PATH}")
     print(f"Please download the model and place it at the correct path, or update model_path_gguf.")
     print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
     print("LLM initialization skipped.")
else:
    try:
        llm = CTransformers(model=LOCAL_MODEL_PATH, model_type='llama', config=config)
        print("Fine-Tuned CTransformers LLM initialized.")
    except Exception as e:
        print(f"Error initializing CTransformers: {e}")
        print("LLM initialization failed.")
        # Decide if you want to exit or continue without LLM
        # exit()

# --- RAG Setup ---
def format_docs(docs):
    # Expects a list of Document objects
    return "\n\n".join(doc.page_content for doc in docs if isinstance(doc, Document))


# --- RAG Function using ChromaDB ---
def answer_resume_question(user_question):
    """Answers questions using RAG with ChromaDB similarity search."""
    k_limit = 5 # Number of documents to retrieve
    print(f"\nReceived question: {user_question}")

    if not vectorstore:
        return "Error: Vector store is not available."

    print(f"Performing similarity search (top {k_limit})...")
    try:
        # 1. Retrieve documents using ChromaDB similarity search
        # Use similarity_search_with_score to get scores if needed for logging/debugging
        # results_with_scores = vectorstore.similarity_search_with_score(user_question, k=k_limit)
        # retrieved_docs = [doc for doc, score in results_with_scores]
        # similarity_scores = [score for doc, score in results_with_scores]

        # Or simpler retrieval if scores aren't needed immediately:
        retrieved_docs = vectorstore.similarity_search(user_question, k=k_limit)

        if not retrieved_docs:
            print("No relevant documents found via similarity search.")
            # Optionally add fallback logic here if needed
            return "I couldn't find relevant information in the CV for your query."

        print(f"Retrieved {len(retrieved_docs)} documents.")
        # Log details of top retrieved docs
        for i, doc in enumerate(retrieved_docs):
            # score = similarity_scores[i] # Uncomment if using similarity_search_with_score
            print(f"  -> Top {i+1} Doc (Cat: {doc.metadata.get('category')}, SrcID: {doc.metadata.get('source_doc_id')}) Content: {doc.page_content.replace(os.linesep, ' ')}...")

        # 2. Combine content
        combined_context = format_docs(retrieved_docs) # Use the existing format_docs

        # 3. Check if LLM is available
        if not llm:
             return "LLM is not available, cannot generate a final answer. Relevant context found:\n\n" + combined_context

        # 4. Final Answer Generation Step
        qa_template = """
Based *only* on the following context from Jaynil Jaiswal's CV, provide a detailed and comprehensive answer to the question.
If the context does not contain the information needed to answer the question fully, please state that clearly using phrases like 'Based on the context provided, I cannot answer...' or 'The provided context does not contain information about...'.
Do not make up any information or provide generic non-answers. You are free to selectively use sources from the context to answer the question.

Context:
{context}

Question: {question}

Answer:"""
        qa_prompt = PromptTemplate.from_template(qa_template)
        formatted_qa_prompt = qa_prompt.format(context=combined_context, question=user_question)

        print("Generating final answer...")
        answer = llm.invoke(formatted_qa_prompt).strip()
        print(f"LLM Response: {answer}")

        # Optional: Add the insufficient answer check here if desired
        # if is_answer_insufficient(answer):
        #     print("LLM answer seems insufficient...")
        #     # Return fallback or the potentially insufficient answer based on preference
        #     return FALLBACK_MESSAGE # Assuming FALLBACK_MESSAGE is defined

    except Exception as e:
        print(f"Error during RAG execution: {e}")
        answer = "Sorry, I encountered an error while processing your question."

    return answer
# --- End Modification ---


# --- Gradio Interface ---
# (This part remains unchanged)
iface = gr.Interface(
    fn=answer_resume_question,
    inputs=gr.Textbox(label="πŸ’¬ Ask about my CV", placeholder="E.g. What was done at Oracle? List my projects.", lines=2),
    outputs=gr.Textbox(label="πŸ’‘ Answer", lines=8),
    title="πŸ“š CV RAG Chatbot (ChromaDB + Granular Docs)",
    description="Ask questions about the CV! (Uses local GGUF model via CTransformers)",
    theme="soft",
    allow_flagging="never"
)

# --- Run Gradio ---
if __name__ == "__main__":
    print("Launching Gradio interface...")
    # Make sure LLM was loaded successfully before launching
    if vectorstore and llm:
         iface.launch(server_name="0.0.0.0", server_port=7860)
    elif not vectorstore:
         print("Could not launch: Vector store failed to load.")
    else: # LLM failed
         print("Could not launch: LLM failed to load. Check model path and dependencies.")