Spaces:
Running
Running
File size: 15,485 Bytes
3783d54 852f11e 3783d54 6e15e32 833a3af 6fa2447 3783d54 6fa2447 3783d54 7976967 3783d54 7976967 3783d54 e7b0eda 97c17f0 e7b0eda d5d8a26 3783d54 d5d8a26 3783d54 c7b0000 3783d54 c7b0000 3783d54 833a3af 3783d54 833a3af 3783d54 6e15e32 c4457ca 6e15e32 2cbfd3d c4457ca 6e15e32 c4457ca 6e15e32 c4457ca 6e15e32 c4457ca 82ee3f8 3783d54 fd1df88 82ee3f8 b612bcb 82ee3f8 b612bcb 82ee3f8 4fe8b5e 82ee3f8 4fe8b5e 82ee3f8 3a06055 b612bcb 3a06055 b612bcb 3a06055 3a1c257 c7b0000 3a1c257 4fe8b5e 3a1c257 c7b0000 3a1c257 c7b0000 3a1c257 833a3af 3a1c257 833a3af 3a1c257 3a06055 709936e 3a06055 4fe8b5e 3a06055 3783d54 dd94956 3783d54 82ee3f8 3783d54 45f2d0c 82ee3f8 45f2d0c c4457ca 82ee3f8 6e15e32 82ee3f8 6e15e32 82ee3f8 6e15e32 82ee3f8 6e15e32 82ee3f8 6e15e32 82ee3f8 6e15e32 82ee3f8 3783d54 c4457ca 27027f3 c4457ca 54ff88c c4457ca 54ff88c c4457ca 54ff88c c4457ca 97c17f0 c4457ca 97c17f0 c4457ca 54ff88c c4457ca 833a3af c4457ca 82ee3f8 c4457ca 3783d54 35010d1 3783d54 55b8d78 3783d54 35010d1 82ee3f8 3783d54 97c17f0 3783d54 97c17f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from datasets import load_dataset
from huggingface_hub import Repository
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
import os
import pandas as pd
import gradio as gr
from PIL import Image
import numpy as np
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
from CLIP import load as load_clip,load_vae,encode_prompt
from rich import print as rp
from diffusers import AutoencoderKL
#url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be a local file
#model = AutoencoderKL.from_single_file(url)
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
big = False if device == torch.device('cpu') else True
# Parameters
IMG_SIZE = 1024 if big else 256
BATCH_SIZE = 1 if big else 1
EPOCHS = 12
LR = 0.0002
dataset_id = "K00B404/pix2pix_flux_set"
model_repo_id = "K00B404/pix2pix_flux"
# Global model variable
global_model = None
# CLIP and VAE
clip_model, clip_tokenizer = load_clip()
vae = load_vae()
def load_model():
"""Load the models at startup"""
global global_model
weights_name = 'big_model_weights.pth' if big else 'small_model_weights.pth'
try:
checkpoint = torch.load(weights_name, map_location=device)
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
global_model = model
rp("Model loaded successfully!")
return model
except Exception as e:
rp(f"Error loading model: {e}")
model = big_UNet().to(device) if big else small_UNet().to(device)
global_model = model
return model
class Pix2PixDataset(torch.utils.data.Dataset):
def __init__(self, combined_data, transform, clip_tokenizer,clip_model):
self.data = combined_data
self.transform = transform
self.clip_tokenizer = clip_tokenizer
self.original_folder = 'images_dataset/original/'
self.target_folder = 'images_dataset/target/'
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
original_img_filename = os.path.basename(self.data.iloc[idx]['image_path'])
original_img_path = os.path.join(self.original_folder, original_img_filename)
target_img_path = os.path.join(self.target_folder, original_img_filename)
original_img = Image.open(original_img_path).convert('RGB')
target_img = Image.open(target_img_path).convert('RGB')
# Transform images
original = self.transform(original_img)
target = self.transform(target_img)
# Get prompts from the DataFrame
original_prompt = self.data.iloc[idx]['original_prompt']
enhanced_prompt = self.data.iloc[idx]['enhanced_prompt']
# Encode images
original_image_latents = vae.encode(original_img).latent_dist.sample()
target_image_latents = vae.encode(target_img).latent_dist.sample()
# Encode prompts
prompt_latents = encode_prompt(enhanced_prompt,clip_model,clip_tokenizer)
# Pass these to your Pix2Pix model
#generated_images = pix2pix_model(original_latents, prompt_latents)
return original_image_latents,target_image_latents,prompt_latents
# Tokenize the prompts using CLIP tokenizer
#original_tokens = self.clip_tokenizer(original_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
#enhanced_tokens = self.clip_tokenizer(enhanced_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
#return original, target, original_tokens, enhanced_tokens
class UNetWrapper:
def __init__(self, unet_model, repo_id, epoch, loss, optimizer, scheduler=None):
self.loss = loss
self.epoch = epoch
self.model = unet_model
self.optimizer = optimizer
self.scheduler = scheduler
self.repo_id = repo_id
self.token = os.getenv('NEW_TOKEN') # Ensure the token is set in the environment
self.api = HfApi(token=self.token)
def save_checkpoint(self, save_path):
"""Save checkpoint with model, optimizer, and scheduler states."""
self.save_dict = {
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict() if self.scheduler else None,
'model_config': {
'big': isinstance(self.model, big_UNet),
'img_size': 1024 if isinstance(self.model, big_UNet) else 256
},
'epoch': self.epoch,
'loss': self.loss
}
torch.save(self.save_dict, save_path)
print(f"Checkpoint saved at epoch {self.epoch}, loss: {self.loss}")
def load_checkpoint(self, checkpoint_path):
"""Load model, optimizer, and scheduler states from the checkpoint."""
checkpoint = torch.load(checkpoint_path, map_location=device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if self.scheduler and checkpoint['scheduler_state_dict']:
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
self.epoch = checkpoint['epoch']
self.loss = checkpoint['loss']
print(f"Checkpoint loaded: epoch {self.epoch}, loss: {self.loss}")
def push_to_hub(self, pth_name):
"""Push model checkpoint and metadata to the Hugging Face Hub."""
try:
self.api.upload_file(
path_or_fileobj=pth_name,
path_in_repo=pth_name,
repo_id=self.repo_id,
token=self.token,
repo_type="model"
)
print(f"Model checkpoint successfully uploaded to {self.repo_id}")
except Exception as e:
print(f"Error uploading model: {e}")
# Create and upload model card
model_card = f"""---
tags:
- unet
- pix2pix
- pytorch
library_name: pytorch
license: wtfpl
datasets:
- K00B404/pix2pix_flux_set
language:
- en
pipeline_tag: image-to-image
---
# Pix2Pix UNet Model
## Model Description
Custom UNet model for Pix2Pix image translation.
- **Image Size:** {self.save_dict['model_config']['img_size']}
- **Model Type:** {"big" if big else "small"}_UNet ({self.save_dict['model_config']['img_size']})
## Usage
```python
import torch
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
big = True
# Load the model
name='big_model_weights.pth' if big else 'small_model_weights.pth'
checkpoint = torch.load(name)
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
```
## Model Architecture
{str(self.model)} """
rp(model_card)
try:
# Save and upload README
with open("README.md", "w") as f:
f.write(f"# Pix2Pix UNet Model\n\n"
f"- **Image Size:** {self.save_dict['model_config']['img_size']}\n"
f"- **Model Type:** {'big' if big else 'small'}_UNet ({self.save_dict['model_config']['img_size']})\n"
f"## Model Architecture\n{str(self.model)}")
self.api.upload_file(
path_or_fileobj="README.md",
path_in_repo="README.md",
repo_id=self.repo_id,
token=self.token,
repo_type="model"
)
# Clean up local files
os.remove(pth_name)
os.remove("README.md")
print(f"Model successfully uploaded to {self.repo_id}")
except Exception as e:
print(f"Error uploading model: {e}")
def prepare_input(image, device='cpu'):
"""Prepare image for inference"""
transform = transforms.Compose([
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
])
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
input_tensor = transform(image).unsqueeze(0).to(device)
return input_tensor
def run_inference(image):
"""Run inference on a single image"""
global global_model
if global_model is None:
return "Error: Model not loaded"
global_model.eval()
input_tensor = prepare_input(image, device)
with torch.no_grad():
output = global_model(input_tensor)
# Convert output to image
output = output.cpu().squeeze(0).permute(1, 2, 0).numpy()
output = ((output - output.min()) / (output.max() - output.min()) * 255).astype(np.uint8)
rp(output[0])
return output
def to_hub(model, epoch, loss):
wrapper = UNetWrapper(model, model_repo_id, epoch, loss)
wrapper.push_to_hub()
def train_model(epochs, save_interval=1):
"""Training function with checkpoint saving and model uploading."""
global global_model
# Load combined data CSV
data_path = 'combined_data.csv'
combined_data = pd.read_csv(data_path)
# Define the transformation
transform = transforms.Compose([
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
])
# Initialize dataset and dataloader
dataset = Pix2PixDataset(combined_data, transform, clip_tokenizer, clip_model)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
model = global_model
criterion = nn.L1Loss() # You may change this to suit your loss calculation needs
optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # Example scheduler
wrapper = UNetWrapper(model, model_repo_id, epoch=0, loss=0.0, optimizer=optimizer, scheduler=scheduler)
output_text = []
for epoch in range(epochs):
model.train()
running_loss = 0.0
for i, (latent_original, latent_target, latent_prompt) in enumerate(dataloader):
# Move data to device
latent_original, latent_target, latent_prompt = latent_original.to(device), latent_target.to(device), latent_prompt.to(device)
optimizer.zero_grad()
# Forward pass with the latents
output = model(latent_target, latent_prompt) # Assuming your model can take both target and prompt latents
# Calculate loss using the original latents
img_loss = criterion(output, latent_original)
total_loss = img_loss
total_loss.backward()
optimizer.step()
running_loss += total_loss.item()
if i % 10 == 0:
status = f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {total_loss.item():.8f}"
print(status)
output_text.append(status)
# Update the epoch and loss for checkpoint
wrapper.epoch = epoch + 1
wrapper.loss = running_loss / len(dataloader)
# Save checkpoint at specified intervals
if (epoch + 1) % save_interval == 0:
checkpoint_path = f'big_checkpoint_epoch_{epoch+1}.pth' if big else f'small_checkpoint_epoch_{epoch+1}.pth'
wrapper.save_checkpoint(checkpoint_path)
wrapper.push_to_hub(checkpoint_path)
scheduler.step() # Update learning rate scheduler
global_model = model # Update global model after training
return model, "\n".join(output_text)
def train_model_old(epochs):
"""Training function"""
global global_model
# Load combined data CSV
data_path = 'combined_data.csv' # Adjust this path
combined_data = pd.read_csv(data_path)
# Define the transformation
transform = transforms.Compose([
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
])
# Initialize the dataset and dataloader
dataset = Pix2PixDataset(combined_data, transform, clip_tokenizer)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
model = global_model
criterion = nn.L1Loss() # L1 loss for image reconstruction
optimizer = optim.Adam(model.parameters(), lr=LR)
output_text = []
for epoch in range(epochs):
model.train()
for i, (original, target, original_prompt_tokens, enhanced_prompt_tokens) in enumerate(dataloader):
# Move images and prompt embeddings to the appropriate device (CPU or GPU)
original, target = original.to(device), target.to(device)
original_prompt_tokens = original_prompt_tokens.input_ids.to(device).float() # Convert to float
enhanced_prompt_tokens = enhanced_prompt_tokens.input_ids.to(device).float() # Convert to float
optimizer.zero_grad()
# Forward pass through the model
output = model(target)
# Compute image reconstruction loss
img_loss = criterion(output, original)
rp(f"Image {i} Loss:{img_loss}")
# Combine losses
total_loss = img_loss # Add any other losses if necessary
total_loss.backward()
# Optimizer step
optimizer.step()
if i % 10 == 0:
status = f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {total_loss.item():.8f}"
rp(status)
output_text.append(status)
# Push model to Hugging Face Hub at the end of each epoch
to_hub(model, epoch, total_loss)
global_model = model # Update the global model after training
return model, "\n".join(output_text)
def gradio_train(epochs):
# Gradio training interface function
model, training_log = train_model(int(epochs))
#to_hub(model)
return f"{training_log}\n\nModel trained for {epochs} epochs and pushed to {model_repo_id}"
def gradio_inference(input_image):
# Gradio inference interface function
output_image = run_inference(input_image) # Assuming `run_inference` returns a tuple (output_image, other_data)
rp(output_image)
# If `run_inference` returns a tuple, you should only return the image part
return output_image # Ensure you're only returning the processed output image
# Create Gradio interface with tabs
with gr.Blocks() as app:
gr.Markdown("# Pix2Pix Model Training and Inference")
with gr.Tab("Train"):
epochs_input = gr.Number(value=EPOCHS, label="Number of epochs")
train_button = gr.Button("Train")
training_output = gr.Textbox(label="Training Log", interactive=False)
train_button.click(gradio_train, inputs=[epochs_input], outputs=[training_output])
with gr.Tab("Inference"):
image_input = gr.Image(type='numpy')
prompt_input = gr.Textbox(label="Prompt")
inference_button = gr.Button("Generate")
inference_output = gr.Image(type='numpy', label="Generated Image")
inference_button.click(gradio_inference, inputs=[image_input], outputs=[inference_output])
load_model()
app.launch()
|