Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,778 Bytes
3ee3ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
from copy import deepcopy
from typing import List, Dict, Tuple, Optional, Union, Any
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from data.data_utils import pil_img2rgb
from modeling.bagel.qwen2_navit import NaiveCache
VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer.
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''
GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
class InterleaveInferencer:
def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
self.model = model
self.vae_model = vae_model
self.tokenizer = tokenizer
self.vae_transform = vae_transform
self.vit_transform = vit_transform
self.new_token_ids = new_token_ids
def init_gen_context(self):
gen_context = {
'kv_lens': [0],
'ropes': [0],
'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
}
return gen_context
@torch.no_grad()
def update_context_text(self, text, gen_context):
# used for interleave data, currently only support 1 data inference,
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input, kv_lens, ropes = self.model.prepare_prompts(
curr_kvlens=kv_lens,
curr_rope=ropes,
prompts=[text],
tokenizer=self.tokenizer,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)
gen_context['kv_lens'] = kv_lens
gen_context['ropes'] = ropes
gen_context['past_key_values'] = past_key_values
return gen_context
@torch.no_grad()
def update_context_image(self, image, gen_context, vae=True, vit=True):
# used for interleave data, currently only support 1 data inference,
assert vae or vit
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
if vae:
## update vae
generation_input, kv_lens, ropes = self.model.prepare_vae_images(
curr_kvlens=kv_lens,
curr_rope=ropes,
images=[image],
transforms=self.vae_transform,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
if vit:
## update vit
generation_input, kv_lens, ropes = self.model.prepare_vit_images(
curr_kvlens=kv_lens,
curr_rope=ropes,
images=[image],
transforms=self.vit_transform,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)
gen_context['kv_lens'] = kv_lens
gen_context['ropes'] = ropes
gen_context['past_key_values'] = past_key_values
return gen_context
@torch.no_grad()
def gen_image(
self,
image_shape,
gen_context,
cfg_text_scale=4.0,
cfg_img_scale=1.5,
cfg_text_precontext=None,
cfg_img_precontext=None,
cfg_interval=(0.4, 1.0),
cfg_renorm_min=0.0,
cfg_renorm_type="global",
num_timesteps=50,
timestep_shift=3.0
):
# print(cfg_renorm_type)
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input = self.model.prepare_vae_latent(
curr_kvlens=kv_lens,
curr_rope=ropes,
image_sizes=[image_shape],
new_token_ids=self.new_token_ids,
)
# text cfg
cfg_text_past_key_values = cfg_text_precontext['past_key_values']
kv_lens_cfg = cfg_text_precontext['kv_lens']
ropes_cfg = cfg_text_precontext['ropes']
generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
curr_kvlens=kv_lens_cfg,
curr_rope=ropes_cfg,
image_sizes=[image_shape],
)
# img cfg
cfg_img_past_key_values = cfg_img_precontext['past_key_values']
kv_lens_cfg = cfg_img_precontext['kv_lens']
ropes_cfg = cfg_img_precontext['ropes']
generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
curr_kvlens=kv_lens_cfg,
curr_rope=ropes_cfg,
image_sizes=[image_shape],
)
unpacked_latent = self.model.generate_image(
past_key_values=past_key_values,
cfg_text_past_key_values=cfg_text_past_key_values,
cfg_img_past_key_values=cfg_img_past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
timestep_shift=timestep_shift,
**generation_input,
cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
)
image = self.decode_image(unpacked_latent[0], image_shape)
return image
def decode_image(self, latent, image_shape):
H, W = image_shape
h, w = H // self.model.latent_downsample, W // self.model.latent_downsample
latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
image = self.vae_model.decode(latent)
image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
image = Image.fromarray((image).to(torch.uint8).cpu().numpy())
return image
@torch.no_grad()
def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
gen_context = deepcopy(gen_context)
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
for unpacked_latent in self.model.generate_text(
past_key_values=past_key_values,
max_length=max_length,
do_sample=do_sample,
temperature=temperature,
end_token_id=self.new_token_ids['eos_token_id'],
**generation_input,
):
output = self.tokenizer.decode(unpacked_latent[:,0])
# output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
yield output
@torch.no_grad()
def interleave_inference(
self,
input_lists: List[Union[str, Image.Image]],
think=False,
understanding_output=False,
max_think_token_n=1000,
do_sample=False, # for gen_text
temperature=0.3, # for gen_text
# gen_image kargs
cfg_text_scale=3.0,
cfg_img_scale=1.5,
cfg_interval=[0.4, 1.0],
timestep_shift=3.0,
num_timesteps=50,
cfg_renorm_min=0.0,
cfg_renorm_type="global",
image_shapes=(1024, 1024), # Default, can be overridden by actual input image
):
gen_context = self.init_gen_context()
cfg_text_context = self.init_gen_context()
cfg_img_context = self.init_gen_context()
current_image_shapes = image_shapes
# Use torch.cuda.amp.autocast if available, otherwise a simple context manager
# For simplicity, assuming it's handled externally or not strictly needed for this snippet
# with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
if think:
system_prompt = VLM_THINK_SYSTEM_PROMPT if understanding_output else GEN_THINK_SYSTEM_PROMPT
gen_context = self.update_context_text(system_prompt, gen_context)
cfg_text_context = self.update_context_text(system_prompt, cfg_text_context)
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
for input_term in input_lists:
if isinstance(input_term, str):
gen_context = self.update_context_text(input_term, gen_context)
cfg_text_context = self.update_context_text(input_term, cfg_text_context)
cfg_img_context = self.update_context_text(input_term, cfg_img_context)
elif isinstance(input_term, Image.Image):
current_image_shapes = input_term.size[::-1] # H, W
use_vae_for_input_image = not understanding_output
gen_context = self.update_context_image(input_term, gen_context, vae=use_vae_for_input_image, vit=True)
cfg_text_context = self.update_context_image(input_term, cfg_text_context, vae=use_vae_for_input_image, vit=True)
# cfg_img_context does not typically see input images
else:
raise ValueError(f"Unsupported input type: {type(input_term)}")
if understanding_output: # Generate text
yield from self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature)
else: # Generate image
if think:
thought_text_parts = []
for part in self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature):
yield part # Stream the thought
thought_text_parts.append(part)
full_thought_text = "".join(thought_text_parts)
if full_thought_text: # Only update if thought was generated
gen_context = self.update_context_text(full_thought_text, gen_context)
cfg_text_context = self.update_context_text(full_thought_text, cfg_text_context)
img = self.gen_image(
image_shape=current_image_shapes,
gen_context=gen_context,
cfg_text_precontext=cfg_text_context,
cfg_img_precontext=cfg_img_context,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=cfg_interval,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
yield img
def __call__(
self,
image: Optional[Image.Image] = None,
text: Optional[str] = None,
**kargs
) -> Any:
input_list = []
if image is not None:
input_list.append(image)
if text is not None:
input_list.append(text)
if not input_list and not kargs.get('force_empty_input', False): # allow forcing for special cases if needed
return
# Intelligent setting of 'understanding_output' if not provided by caller
# This helps app.py's simpler calls like inferencer(text=...) to correctly produce text.
if 'understanding_output' not in kargs:
if text is not None and image is None: # Primarily text input
kargs['understanding_output'] = True
elif image is not None and text is None: # Primarily image input, assume image-to-text (captioning/VQA)
kargs['understanding_output'] = True
# If both text and image, or neither, rely on caller or default (False for image gen)
yield from self.interleave_inference(input_list, **kargs)
|