KingNish commited on
Commit
0c38e11
·
verified ·
1 Parent(s): 29e474d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +348 -361
app.py CHANGED
@@ -13,6 +13,7 @@ subprocess.run(
13
 
14
  from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
15
  from PIL import Image
 
16
 
17
  from data.data_utils import add_special_tokens, pil_img2rgb
18
  from data.transforms import ImageTransform
@@ -31,16 +32,19 @@ save_dir = "./model"
31
  repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
32
  cache_dir = save_dir + "/cache"
33
 
34
- snapshot_download(cache_dir=cache_dir,
35
- local_dir=save_dir,
36
- repo_id=repo_id,
37
- local_dir_use_symlinks=False,
38
- resume_download=True,
39
- allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
40
- )
 
 
 
 
41
 
42
- # Model Initialization
43
- model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
44
 
45
  llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
46
  llm_config.qk_norm = True
@@ -56,7 +60,7 @@ vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetens
56
  config = BagelConfig(
57
  visual_gen=True,
58
  visual_und=True,
59
- llm_config=llm_config,
60
  vit_config=vit_config,
61
  vae_config=vae_config,
62
  vit_max_num_patch_per_side=70,
@@ -77,7 +81,6 @@ tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
77
  vae_transform = ImageTransform(1024, 512, 16)
78
  vit_transform = ImageTransform(980, 224, 14)
79
 
80
- # Model Loading and Multi GPU Infernece Preparing
81
  device_map = infer_auto_device_map(
82
  model,
83
  max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
@@ -97,16 +100,20 @@ same_device_modules = [
97
  if torch.cuda.device_count() == 1:
98
  first_device = device_map.get(same_device_modules[0], "cuda:0")
99
  for k in same_device_modules:
100
- if k in device_map:
101
- device_map[k] = first_device
102
- else:
103
- device_map[k] = "cuda:0"
104
  else:
105
- first_device = device_map.get(same_device_modules[0])
106
- for k in same_device_modules:
107
- if k in device_map:
108
- device_map[k] = first_device
109
-
 
 
 
 
 
 
 
110
  model = load_checkpoint_and_dispatch(
111
  model,
112
  checkpoint=os.path.join(model_path, "ema.safetensors"),
@@ -116,8 +123,6 @@ model = load_checkpoint_and_dispatch(
116
  force_hooks=True,
117
  ).eval()
118
 
119
-
120
- # Inferencer Preparing
121
  inferencer = InterleaveInferencer(
122
  model=model,
123
  vae_model=vae_model,
@@ -128,8 +133,7 @@ inferencer = InterleaveInferencer(
128
  )
129
 
130
  def set_seed(seed):
131
- """Set random seeds for reproducibility"""
132
- if seed > 0:
133
  random.seed(seed)
134
  np.random.seed(seed)
135
  torch.manual_seed(seed)
@@ -140,389 +144,372 @@ def set_seed(seed):
140
  torch.backends.cudnn.benchmark = False
141
  return seed
142
 
143
- # Text to Image function with thinking option and hyperparameters
144
- def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
145
- timestep_shift=3.0, num_timesteps=50,
146
- cfg_renorm_min=1.0, cfg_renorm_type="global",
147
- max_think_token_n=1024, do_sample=False, text_temperature=0.3,
148
- seed=0, image_ratio="1:1"):
149
- # Set seed for reproducibility
150
  set_seed(seed)
 
 
 
 
 
151
 
152
- if image_ratio == "1:1":
153
- image_shapes = (1024, 1024)
154
- elif image_ratio == "4:3":
155
- image_shapes = (768, 1024)
156
- elif image_ratio == "3:4":
157
- image_shapes = (1024, 768)
158
- elif image_ratio == "16:9":
159
- image_shapes = (576, 1024)
160
- elif image_ratio == "9:16":
161
- image_shapes = (1024, 576)
162
-
163
- # Set hyperparameters
164
  inference_hyper = dict(
165
  max_think_token_n=max_think_token_n if show_thinking else 1024,
166
  do_sample=do_sample if show_thinking else False,
167
  text_temperature=text_temperature if show_thinking else 0.3,
168
  cfg_text_scale=cfg_text_scale,
169
- cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
170
  timestep_shift=timestep_shift,
171
  num_timesteps=num_timesteps,
172
  cfg_renorm_min=cfg_renorm_min,
173
  cfg_renorm_type=cfg_renorm_type,
174
  image_shapes=image_shapes,
175
  )
176
-
177
- # Call inferencer with or without think parameter based on user choice
178
  result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
179
- return result["image"], result.get("text", None)
180
-
181
-
182
- # Image Understanding function with thinking option and hyperparameters
183
- def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
184
- do_sample=False, text_temperature=0.3, max_new_tokens=512):
185
- if image is None:
186
- return "Please upload an image."
187
-
188
- if isinstance(image, np.ndarray):
189
- image = Image.fromarray(image)
190
 
 
 
 
 
 
191
  image = pil_img2rgb(image)
192
 
193
- # Set hyperparameters
194
  inference_hyper = dict(
195
  do_sample=do_sample,
196
  text_temperature=text_temperature,
197
- max_think_token_n=max_new_tokens, # Set max_length
198
  )
199
-
200
- # Use show_thinking parameter to control thinking process
201
- result = inferencer(image=image, text=prompt, think=show_thinking,
202
- understanding_output=True, **inference_hyper)
203
- return result["text"]
204
-
205
-
206
- # Image Editing function with thinking option and hyperparameters
207
- def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
208
- cfg_img_scale=2.0, cfg_interval=0.0,
209
- timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
210
- cfg_renorm_type="text_channel", max_think_token_n=1024,
211
- do_sample=False, text_temperature=0.3, seed=0):
212
- # Set seed for reproducibility
213
- set_seed(seed)
214
-
215
- if image is None:
216
- return "Please upload an image.", ""
217
-
218
- if isinstance(image, np.ndarray):
219
- image = Image.fromarray(image)
220
 
 
 
 
 
 
 
 
221
  image = pil_img2rgb(image)
222
-
223
- # Set hyperparameters
224
  inference_hyper = dict(
225
  max_think_token_n=max_think_token_n if show_thinking else 1024,
226
  do_sample=do_sample if show_thinking else False,
227
  text_temperature=text_temperature if show_thinking else 0.3,
228
  cfg_text_scale=cfg_text_scale,
229
  cfg_img_scale=cfg_img_scale,
230
- cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
231
  timestep_shift=timestep_shift,
232
  num_timesteps=num_timesteps,
233
  cfg_renorm_min=cfg_renorm_min,
234
  cfg_renorm_type=cfg_renorm_type,
235
  )
236
-
237
- # Include thinking parameter based on user choice
238
  result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
239
- return result["image"], result.get("text", "")
240
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
- # Helper function to load example images
243
- def load_example_image(image_path):
244
- try:
245
- return Image.open(image_path)
246
- except Exception as e:
247
- print(f"Error loading example image: {e}")
248
- return None
249
 
 
 
 
 
250
 
251
- # Gradio UI
252
- with gr.Blocks() as demo:
253
- gr.Markdown("""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  <div>
255
  <img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
 
256
  </div>
257
  """)
258
-
259
- with gr.Tab("📝 Text to Image"):
260
- txt_input = gr.Textbox(
261
- label="Prompt",
262
- value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
263
- )
264
-
265
- with gr.Row():
266
- show_thinking = gr.Checkbox(label="Thinking", value=False)
267
-
268
- # Add hyperparameter controls in an accordion
269
- with gr.Accordion("Inference Hyperparameters", open=False):
270
- # 参数一排两个布局
271
- with gr.Group():
272
- with gr.Row():
273
- seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
274
- label="Seed", info="0 for random seed, positive for reproducible results")
275
- image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
276
- value="1:1", label="Image Ratio",
277
- info="The longer size is fixed to 1024")
278
-
279
- with gr.Row():
280
- cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
281
- label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
282
- cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
283
- label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
284
-
285
- with gr.Row():
286
- cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
287
- value="global", label="CFG Renorm Type",
288
- info="If the genrated image is blurry, use 'global'")
289
- cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
290
- label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
291
-
292
- with gr.Row():
293
- num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
294
- label="Timesteps", info="Total denoising steps")
295
- timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
296
- label="Timestep Shift", info="Higher values for layout, lower for details")
297
-
298
- # Thinking parameters in a single row
299
- thinking_params = gr.Group(visible=False)
300
- with thinking_params:
301
- with gr.Row():
302
- do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
303
- max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
304
- label="Max Think Tokens", info="Maximum number of tokens for thinking")
305
- text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
306
- label="Temperature", info="Controls randomness in text generation")
307
-
308
- thinking_output = gr.Textbox(label="Thinking Process", visible=False)
309
- img_output = gr.Image(label="Generated Image")
310
- gen_btn = gr.Button("Generate")
311
-
312
- # Dynamically show/hide thinking process box and parameters
313
- def update_thinking_visibility(show):
314
- return gr.update(visible=show), gr.update(visible=show)
315
-
316
- show_thinking.change(
317
- fn=update_thinking_visibility,
318
- inputs=[show_thinking],
319
- outputs=[thinking_output, thinking_params]
320
- )
321
-
322
- # Process function based on thinking option and hyperparameters
323
- @spaces.GPU(duration=90)
324
- def process_text_to_image(prompt, show_thinking, cfg_text_scale,
325
- cfg_interval, timestep_shift,
326
- num_timesteps, cfg_renorm_min, cfg_renorm_type,
327
- max_think_token_n, do_sample, text_temperature, seed, image_ratio):
328
- image, thinking = text_to_image(
329
- prompt, show_thinking, cfg_text_scale, cfg_interval,
330
- timestep_shift, num_timesteps,
331
- cfg_renorm_min, cfg_renorm_type,
332
- max_think_token_n, do_sample, text_temperature, seed, image_ratio
333
- )
334
- return image, thinking if thinking else ""
335
-
336
- gen_btn.click(
337
- fn=process_text_to_image,
338
- inputs=[
339
- txt_input, show_thinking, cfg_text_scale,
340
- cfg_interval, timestep_shift,
341
- num_timesteps, cfg_renorm_min, cfg_renorm_type,
342
- max_think_token_n, do_sample, text_temperature, seed, image_ratio
343
- ],
344
- outputs=[img_output, thinking_output]
345
- )
346
-
347
- with gr.Tab("🖌️ Image Edit"):
348
- with gr.Row():
349
- with gr.Column(scale=1):
350
- edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
351
- edit_prompt = gr.Textbox(
352
- label="Prompt",
353
- value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
354
- )
355
 
356
- with gr.Column(scale=1):
357
- edit_image_output = gr.Image(label="Result")
358
- edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
359
-
360
- with gr.Row():
361
- edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
362
-
363
- # Add hyperparameter controls in an accordion
364
- with gr.Accordion("Inference Hyperparameters", open=False):
365
- with gr.Group():
366
- with gr.Row():
367
- edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
368
- label="Seed", info="0 for random seed, positive for reproducible results")
369
- edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
370
- label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
371
-
372
- with gr.Row():
373
- edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
374
- label="CFG Image Scale", info="Controls how much the model preserves input image details")
375
- edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
376
- label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
377
 
378
- with gr.Row():
379
- edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
380
- value="text_channel", label="CFG Renorm Type",
381
- info="If the genrated image is blurry, use 'global")
382
- edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
383
- label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
384
-
385
- with gr.Row():
386
- edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
387
- label="Timesteps", info="Total denoising steps")
388
- edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
389
- label="Timestep Shift", info="Higher values for layout, lower for details")
390
-
391
-
392
- # Thinking parameters in a single row
393
- edit_thinking_params = gr.Group(visible=False)
394
- with edit_thinking_params:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
  with gr.Row():
396
- edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
397
- edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
398
- label="Max Think Tokens", info="Maximum number of tokens for thinking")
399
- edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
400
- label="Temperature", info="Controls randomness in text generation")
401
-
402
- edit_btn = gr.Button("Submit")
403
-
404
- # Dynamically show/hide thinking process box for editing
405
- def update_edit_thinking_visibility(show):
406
- return gr.update(visible=show), gr.update(visible=show)
407
-
408
- edit_show_thinking.change(
409
- fn=update_edit_thinking_visibility,
410
- inputs=[edit_show_thinking],
411
- outputs=[edit_thinking_output, edit_thinking_params]
412
- )
413
-
414
- # Process editing with thinking option and hyperparameters
415
- @spaces.GPU(duration=90)
416
- def process_edit_image(image, prompt, show_thinking, cfg_text_scale,
417
- cfg_img_scale, cfg_interval,
418
- timestep_shift, num_timesteps, cfg_renorm_min,
419
- cfg_renorm_type, max_think_token_n, do_sample,
420
- text_temperature, seed):
421
- edited_image, thinking = edit_image(
422
- image, prompt, show_thinking, cfg_text_scale, cfg_img_scale,
423
- cfg_interval, timestep_shift,
424
- num_timesteps, cfg_renorm_min, cfg_renorm_type,
425
- max_think_token_n, do_sample, text_temperature, seed
426
  )
427
-
428
- return edited_image, thinking if thinking else ""
429
-
430
- edit_btn.click(
431
- fn=process_edit_image,
432
- inputs=[
433
- edit_image_input, edit_prompt, edit_show_thinking,
434
- edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
435
- edit_timestep_shift, edit_num_timesteps,
436
- edit_cfg_renorm_min, edit_cfg_renorm_type,
437
- edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
438
- ],
439
- outputs=[edit_image_output, edit_thinking_output]
440
- )
441
-
442
- with gr.Tab("🖼️ Image Understanding"):
443
- with gr.Row():
444
- with gr.Column(scale=1):
445
- img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
446
- understand_prompt = gr.Textbox(
447
- label="Prompt",
448
- value="Can someone explain what's funny about this meme??"
449
- )
450
-
451
- with gr.Column(scale=1):
452
- txt_output = gr.Textbox(label="Result", lines=20)
453
-
454
- with gr.Row():
455
- understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
456
-
457
- # Add hyperparameter controls in an accordion
458
- with gr.Accordion("Inference Hyperparameters", open=False):
459
- with gr.Row():
460
- understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
461
- understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
462
- label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
463
- understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
464
- label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
465
-
466
- img_understand_btn = gr.Button("Submit")
467
-
468
- # Process understanding with thinking option and hyperparameters
469
- @spaces.GPU(duration=90)
470
- def process_understanding(image, prompt, show_thinking, do_sample,
471
- text_temperature, max_new_tokens):
472
- result = image_understanding(
473
- image, prompt, show_thinking, do_sample,
474
- text_temperature, max_new_tokens
475
  )
476
- return result
 
477
 
478
- img_understand_btn.click(
479
- fn=process_understanding,
480
- inputs=[
481
- img_input, understand_prompt, understand_show_thinking,
482
- understand_do_sample, understand_text_temperature, understand_max_new_tokens
483
- ],
484
- outputs=txt_output
485
- )
486
-
487
- gr.Markdown("""
488
- <div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
489
- <a href="https://bagel-ai.org/">
490
- <img
491
- src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
492
- alt="BAGEL Website"
493
- />
494
- </a>
495
- <a href="https://arxiv.org/abs/2505.14683">
496
- <img
497
- src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
498
- alt="BAGEL Paper on arXiv"
499
- />
500
- </a>
501
- <a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
502
- <img
503
- src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
504
- alt="BAGEL on Hugging Face"
505
- />
506
- </a>
507
- <a href="https://demo.bagel-ai.org/">
508
- <img
509
- src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
510
- alt="BAGEL Demo"
511
- />
512
- </a>
513
- <a href="https://discord.gg/Z836xxzy">
514
- <img
515
- src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
516
- alt="BAGEL Discord"
517
- />
518
- </a>
519
- <a href="mailto:[email protected]">
520
- <img
521
- src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
522
- alt="BAGEL Email"
523
- />
524
- </a>
525
- </div>
526
- """)
527
 
528
- demo.launch()
 
 
 
 
 
13
 
14
  from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
15
  from PIL import Image
16
+ import uuid
17
 
18
  from data.data_utils import add_special_tokens, pil_img2rgb
19
  from data.transforms import ImageTransform
 
32
  repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
33
  cache_dir = save_dir + "/cache"
34
 
35
+ if not os.path.exists(os.path.join(save_dir, "ema.safetensors")):
36
+ print(f"Downloading model from {repo_id} to {save_dir}")
37
+ snapshot_download(cache_dir=cache_dir,
38
+ local_dir=save_dir,
39
+ repo_id=repo_id,
40
+ local_dir_use_symlinks=False,
41
+ resume_download=True,
42
+ allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
43
+ )
44
+ else:
45
+ print(f"Model found at {save_dir}")
46
 
47
+ model_path = "./model"
 
48
 
49
  llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
50
  llm_config.qk_norm = True
 
60
  config = BagelConfig(
61
  visual_gen=True,
62
  visual_und=True,
63
+ llm_config=llm_config,
64
  vit_config=vit_config,
65
  vae_config=vae_config,
66
  vit_max_num_patch_per_side=70,
 
81
  vae_transform = ImageTransform(1024, 512, 16)
82
  vit_transform = ImageTransform(980, 224, 14)
83
 
 
84
  device_map = infer_auto_device_map(
85
  model,
86
  max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
 
100
  if torch.cuda.device_count() == 1:
101
  first_device = device_map.get(same_device_modules[0], "cuda:0")
102
  for k in same_device_modules:
103
+ device_map[k] = first_device
 
 
 
104
  else:
105
+ # Ensure all same_device_modules are on the same device if they exist in device_map
106
+ # Find the device for the first module in the list that is actually in the device_map
107
+ first_assigned_device = None
108
+ for k_module in same_device_modules:
109
+ if k_module in device_map:
110
+ first_assigned_device = device_map[k_module]
111
+ break
112
+ if first_assigned_device is not None:
113
+ for k_module in same_device_modules:
114
+ if k_module in device_map: # Only assign if the module is part of the device_map
115
+ device_map[k_module] = first_assigned_device
116
+
117
  model = load_checkpoint_and_dispatch(
118
  model,
119
  checkpoint=os.path.join(model_path, "ema.safetensors"),
 
123
  force_hooks=True,
124
  ).eval()
125
 
 
 
126
  inferencer = InterleaveInferencer(
127
  model=model,
128
  vae_model=vae_model,
 
133
  )
134
 
135
  def set_seed(seed):
136
+ if seed is not None and seed > 0:
 
137
  random.seed(seed)
138
  np.random.seed(seed)
139
  torch.manual_seed(seed)
 
144
  torch.backends.cudnn.benchmark = False
145
  return seed
146
 
147
+ # --- Backend Functions (Adapted from original app.py) ---
148
+ @spaces.GPU(duration=90)
149
+ def call_text_to_image(prompt, show_thinking, cfg_text_scale, cfg_interval,
150
+ timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
151
+ max_think_token_n, do_sample, text_temperature, seed, image_ratio):
 
 
152
  set_seed(seed)
153
+ image_shapes = (1024, 1024)
154
+ if image_ratio == "4:3": image_shapes = (768, 1024)
155
+ elif image_ratio == "3:4": image_shapes = (1024, 768)
156
+ elif image_ratio == "16:9": image_shapes = (576, 1024)
157
+ elif image_ratio == "9:16": image_shapes = (1024, 576)
158
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  inference_hyper = dict(
160
  max_think_token_n=max_think_token_n if show_thinking else 1024,
161
  do_sample=do_sample if show_thinking else False,
162
  text_temperature=text_temperature if show_thinking else 0.3,
163
  cfg_text_scale=cfg_text_scale,
164
+ cfg_interval=[cfg_interval, 1.0],
165
  timestep_shift=timestep_shift,
166
  num_timesteps=num_timesteps,
167
  cfg_renorm_min=cfg_renorm_min,
168
  cfg_renorm_type=cfg_renorm_type,
169
  image_shapes=image_shapes,
170
  )
 
 
171
  result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
172
+ return result.get("image", None), result.get("text", None) # text is thinking
 
 
 
 
 
 
 
 
 
 
173
 
174
+ @spaces.GPU(duration=90)
175
+ def call_image_understanding(image, prompt, show_thinking, do_sample, text_temperature, max_new_tokens, seed):
176
+ set_seed(seed)
177
+ if image is None: return "Please upload an image.", None
178
+ if isinstance(image, np.ndarray): image = Image.fromarray(image)
179
  image = pil_img2rgb(image)
180
 
 
181
  inference_hyper = dict(
182
  do_sample=do_sample,
183
  text_temperature=text_temperature,
184
+ max_think_token_n=max_new_tokens,
185
  )
186
+ result = inferencer(image=image, text=prompt, think=show_thinking, understanding_output=True, **inference_hyper)
187
+ return result.get("text", None), None # Main output is text, thinking is part of it if show_thinking=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
+ @spaces.GPU(duration=90)
190
+ def call_edit_image(image, prompt, show_thinking, cfg_text_scale, cfg_img_scale, cfg_interval,
191
+ timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
192
+ max_think_token_n, do_sample, text_temperature, seed):
193
+ set_seed(seed)
194
+ if image is None: return "Please upload an image.", None, None
195
+ if isinstance(image, np.ndarray): image = Image.fromarray(image)
196
  image = pil_img2rgb(image)
197
+
 
198
  inference_hyper = dict(
199
  max_think_token_n=max_think_token_n if show_thinking else 1024,
200
  do_sample=do_sample if show_thinking else False,
201
  text_temperature=text_temperature if show_thinking else 0.3,
202
  cfg_text_scale=cfg_text_scale,
203
  cfg_img_scale=cfg_img_scale,
204
+ cfg_interval=[cfg_interval, 1.0],
205
  timestep_shift=timestep_shift,
206
  num_timesteps=num_timesteps,
207
  cfg_renorm_min=cfg_renorm_min,
208
  cfg_renorm_type=cfg_renorm_type,
209
  )
 
 
210
  result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
211
+ return result.get("image", None), result.get("text", None) # text is thinking
212
+
213
+ # --- Gradio UI ---
214
+
215
+ DEFAULT_WELCOME_MESSAGE = {
216
+ "role": "assistant",
217
+ "content": [
218
+ {"type": "text", "content": "Hello! I am BAGEL, your multimodal assistant. How can I help you today? Select a mode and enter your prompt."}
219
+ ],
220
+ "key": "welcome"
221
+ }
222
+
223
+ class GradioApp:
224
+ def __init__(self):
225
+ self.current_conversation_id = None
226
+ self.conversation_contexts = {}
227
+ self.conversations_list = [] # For the sidebar
228
+
229
+ def _get_current_history(self):
230
+ if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
231
+ return self.conversation_contexts[self.current_conversation_id]["history"]
232
+ return []
233
+
234
+ def _get_current_settings(self):
235
+ if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
236
+ return self.conversation_contexts[self.current_conversation_id].get("settings", {})
237
+ return {}
238
+
239
+ def _update_conversation_list_ui(self):
240
+ return gr.update(choices=[(c['label'], c['key']) for c in self.conversations_list], value=self.current_conversation_id)
241
+
242
+ def add_message(self, text_input, image_input, mode,
243
+ # TTI params
244
+ tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio,
245
+ # Edit params
246
+ edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed,
247
+ # Understand params
248
+ und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed
249
+ ):
250
+ if not text_input and not (mode in ["Image Edit", "Image Understanding"] and image_input):
251
+ gr.Warning("Please enter a prompt or upload an image for Edit/Understanding modes.")
252
+ # Need to yield original state for all outputs if we return early
253
+ # This part is tricky with dynamic outputs, might need a dummy update for all
254
+ # For simplicity, let's assume user always provides some input
255
+ # A better way is to disable submit button if input is invalid
256
+ return self._get_current_history(), gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input
257
+
258
+ if not self.current_conversation_id:
259
+ self.new_chat_session(text_input[:30] if text_input else "New Chat") # Create a new chat if none exists
260
+
261
+ history = self._get_current_history()
262
+
263
+ # Store settings for this turn
264
+ # This is simplified; best-gradio-ui.py stores settings per conversation
265
+ current_turn_settings = {
266
+ "mode": mode,
267
+ "image_input_path": image_input.name if image_input else None, # Store path if image is uploaded
268
+ # TTI
269
+ "tti_show_thinking": tti_show_thinking, "tti_cfg_text_scale": tti_cfg_text_scale, "tti_cfg_interval": tti_cfg_interval, "tti_timestep_shift": tti_timestep_shift, "tti_num_timesteps": tti_num_timesteps, "tti_cfg_renorm_min": tti_cfg_renorm_min, "tti_cfg_renorm_type": tti_cfg_renorm_type, "tti_max_think_token_n": tti_max_think_token_n, "tti_do_sample": tti_do_sample, "tti_text_temperature": tti_text_temperature, "tti_seed": tti_seed, "tti_image_ratio": tti_image_ratio,
270
+ # Edit
271
+ "edit_show_thinking": edit_show_thinking, "edit_cfg_text_scale": edit_cfg_text_scale, "edit_cfg_img_scale": edit_cfg_img_scale, "edit_cfg_interval": edit_cfg_interval, "edit_timestep_shift": edit_timestep_shift, "edit_num_timesteps": edit_num_timesteps, "edit_cfg_renorm_min": edit_cfg_renorm_min, "edit_cfg_renorm_type": edit_cfg_renorm_type, "edit_max_think_token_n": edit_max_think_token_n, "edit_do_sample": edit_do_sample, "edit_text_temperature": edit_text_temperature, "edit_seed": edit_seed,
272
+ # Understand
273
+ "und_show_thinking": und_show_thinking, "und_do_sample": und_do_sample, "und_text_temperature": und_text_temperature, "und_max_new_tokens": und_max_new_tokens, "und_seed": und_seed
274
+ }
275
+ self.conversation_contexts[self.current_conversation_id]["settings"] = current_turn_settings
276
+
277
+ user_message_content = []
278
+ if text_input:
279
+ user_message_content.append({"type": "text", "content": text_input})
280
+ if image_input and mode in ["Image Edit", "Image Understanding"]:
281
+ # Gradio chatbot can display images directly if they are file paths or PIL Images
282
+ # For simplicity, let's assume image_input is a PIL Image or path that gr.Image can handle
283
+ user_message_content.append({"type": "image", "content": image_input})
284
+
285
+ if not user_message_content:
286
+ user_message_content.append({"type": "text", "content": "(No text prompt provided for image operation)"})
287
 
 
 
 
 
 
 
 
288
 
289
+ history.append({"role": "user", "content": user_message_content, "key": str(uuid.uuid4())})
290
+ history.append({"role": "assistant", "content": [{"type": "text", "content": "Processing..."}], "key": str(uuid.uuid4()), "loading": True})
291
+
292
+ yield history, gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input (clear inputs)
293
 
294
+ # Call backend
295
+ try:
296
+ output_image = None
297
+ output_text = None
298
+ thinking_text = None
299
+
300
+ pil_image_input = Image.open(image_input.name) if image_input else None
301
+
302
+ if mode == "Text to Image":
303
+ output_image, thinking_text = call_text_to_image(text_input, tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio)
304
+ elif mode == "Image Edit":
305
+ if not pil_image_input:
306
+ output_text = "Error: Image required for Image Edit mode."
307
+ else:
308
+ output_image, thinking_text = call_edit_image(pil_image_input, text_input, edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed)
309
+ elif mode == "Image Understanding":
310
+ if not pil_image_input:
311
+ output_text = "Error: Image required for Image Understanding mode."
312
+ else:
313
+ output_text, _ = call_image_understanding(pil_image_input, text_input, und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed)
314
+ # For VLM, the main output is text, thinking might be part of it or not separately returned
315
+ # depending on `inferencer`'s behavior with `understanding_output=True`
316
+ if und_show_thinking and output_text and "Thinking:" in output_text: # crude check
317
+ parts = output_text.split("Thinking:", 1)
318
+ if len(parts) > 1:
319
+ thinking_text = "Thinking:" + parts[1].split("\nAnswer:")[0] if "\nAnswer:" in parts[1] else parts[1]
320
+ output_text = parts[0].strip() + ("\nAnswer:" + output_text.split("\nAnswer:")[1] if "\nAnswer:" in output_text else "")
321
+ else:
322
+ thinking_text = None # Or handle as part of main output_text
323
+
324
+ bot_response_content = []
325
+ if thinking_text:
326
+ bot_response_content.append({"type": "text", "content": f"**Thinking Process:**\n{thinking_text}"})
327
+ if output_text:
328
+ bot_response_content.append({"type": "text", "content": output_text})
329
+ if output_image:
330
+ bot_response_content.append({"type": "image", "content": output_image})
331
+
332
+ if not bot_response_content:
333
+ bot_response_content.append({"type": "text", "content": "(No output generated)"})
334
+
335
+ history[-1]["content"] = bot_response_content
336
+ history[-1]["loading"] = False
337
+
338
+ except Exception as e:
339
+ print(f"Error during processing: {e}")
340
+ history[-1]["content"] = [{"type": "text", "content": f"Error: {str(e)}"}]
341
+ history[-1]["loading"] = False
342
+ raise gr.Error(f"Processing Error: {str(e)}")
343
+
344
+ yield history, gr.update(value=None), gr.update(value=None)
345
+
346
+ def new_chat_session(self, label="New Chat"):
347
+ session_id = str(uuid.uuid4())
348
+ self.current_conversation_id = session_id
349
+ self.conversation_contexts[session_id] = {
350
+ "history": [DEFAULT_WELCOME_MESSAGE.copy()],
351
+ "settings": {} # Initialize with default settings if any
352
+ }
353
+ # Ensure label is unique if needed, or just use the provided one
354
+ # For simplicity, we allow duplicate labels for now.
355
+ new_conv_entry = {"label": label if label else f"Chat {len(self.conversations_list) + 1}", "key": session_id}
356
+ self.conversations_list.insert(0, new_conv_entry) # Add to top
357
+ return self._get_current_history(), self._update_conversation_list_ui()
358
+
359
+ def change_chat_session(self, session_id):
360
+ if session_id and session_id in self.conversation_contexts:
361
+ self.current_conversation_id = session_id
362
+ # Potentially update hyperparameter UI elements based on loaded session_settings
363
+ # For now, just load history
364
+ return self._get_current_history()
365
+ return self._get_current_history() # No change or invalid ID
366
+
367
+ def clear_history(self):
368
+ if self.current_conversation_id:
369
+ self.conversation_contexts[self.current_conversation_id]["history"] = [DEFAULT_WELCOME_MESSAGE.copy()]
370
+ # Also clear current inputs if desired
371
+ return self._get_current_history(), gr.update(value=None), gr.update(value=None)
372
+ return [], gr.update(value=None), gr.update(value=None)
373
+
374
+ def build_ui(self):
375
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
376
+ gr.Markdown("""
377
  <div>
378
  <img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
379
+ <h1>Unified BAGEL Chat Interface</h1>
380
  </div>
381
  """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
 
383
+ with gr.Row():
384
+ with gr.Column(scale=1):
385
+ gr.Markdown("### Conversations")
386
+ conversation_selector = gr.Radio(
387
+ label="Select Chat",
388
+ choices=[],
389
+ type="value"
390
+ )
391
+ new_chat_btn = gr.Button(" New Chat")
 
 
 
 
 
 
 
 
 
 
 
 
392
 
393
+ gr.Markdown("### Operation Mode")
394
+ mode_selector = gr.Radio(
395
+ label="Select Mode",
396
+ choices=["Text to Image", "Image Edit", "Image Understanding"],
397
+ value="Text to Image",
398
+ interactive=True
399
+ )
400
+
401
+ # --- Hyperparameter Accordions ---
402
+ # Visibility will be controlled by mode_selector
403
+ with gr.Accordion("Text to Image Settings", open=True, visible=True) as tti_accordion:
404
+ tti_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
405
+ tti_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
406
+ tti_image_ratio_dd = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", interactive=True)
407
+ tti_cfg_text_scale_slider = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
408
+ tti_cfg_interval_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval Start", interactive=True)
409
+ tti_cfg_renorm_type_dd = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", interactive=True)
410
+ tti_cfg_renorm_min_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
411
+ tti_num_timesteps_slider = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", interactive=True)
412
+ tti_timestep_shift_slider = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
413
+ with gr.Group(visible=False) as tti_thinking_params_group:
414
+ tti_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
415
+ tti_max_think_token_slider = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
416
+ tti_text_temp_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
417
+ tti_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[tti_show_thinking_cb], outputs=[tti_thinking_params_group])
418
+
419
+ with gr.Accordion("Image Edit Settings", open=False, visible=False) as edit_accordion:
420
+ edit_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
421
+ edit_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
422
+ edit_cfg_text_scale_slider = gr.Slider(1.0, 8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
423
+ edit_cfg_img_scale_slider = gr.Slider(1.0, 4.0, value=2.0, step=0.1, label="CFG Image Scale", interactive=True)
424
+ edit_cfg_interval_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Interval Start", interactive=True)
425
+ edit_cfg_renorm_type_dd = gr.Dropdown(["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", interactive=True)
426
+ edit_cfg_renorm_min_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
427
+ edit_num_timesteps_slider = gr.Slider(10, 100, value=50, step=5, label="Timesteps", interactive=True)
428
+ edit_timestep_shift_slider = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
429
+ with gr.Group(visible=False) as edit_thinking_params_group:
430
+ edit_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
431
+ edit_max_think_token_slider = gr.Slider(64, 4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
432
+ edit_text_temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
433
+ edit_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[edit_show_thinking_cb], outputs=[edit_thinking_params_group])
434
+
435
+ with gr.Accordion("Image Understanding Settings", open=False, visible=False) as und_accordion:
436
+ und_show_thinking_cb = gr.Checkbox(label="Show Thinking Process (if applicable)", value=False, interactive=True)
437
+ und_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
438
+ und_do_sample_cb = gr.Checkbox(label="Sampling", value=False, interactive=True)
439
+ und_text_temp_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature", interactive=True)
440
+ und_max_new_tokens_slider = gr.Slider(32, 2048, value=512, step=32, label="Max New Tokens", interactive=True)
441
+
442
+ # Logic to show/hide accordions based on mode
443
+ def update_accordion_visibility(mode):
444
+ return (
445
+ gr.update(visible=mode == "Text to Image"),
446
+ gr.update(visible=mode == "Image Edit"),
447
+ gr.update(visible=mode == "Image Understanding")
448
+ )
449
+ mode_selector.change(update_accordion_visibility, inputs=[mode_selector], outputs=[tti_accordion, edit_accordion, und_accordion])
450
+
451
+ with gr.Column(scale=3):
452
+ chatbot_ui = gr.Chatbot(label="BAGEL Chat", value=[DEFAULT_WELCOME_MESSAGE.copy()], bubble_full_width=False, height=600)
453
  with gr.Row():
454
+ image_upload_ui = gr.Image(type="pil", label="Upload Image (for Edit/Understand)", sources=['upload'], visible=False, interactive=True)
455
+ with gr.Row():
456
+ text_input_ui = gr.Textbox(label="Enter your prompt here...", lines=3, scale=7, interactive=True)
457
+ submit_btn = gr.Button("Send", variant="primary", scale=1)
458
+ clear_btn = gr.Button("Clear Chat", scale=1)
459
+
460
+ # Show/hide image upload based on mode
461
+ def update_image_upload_visibility(mode):
462
+ return gr.update(visible=mode in ["Image Edit", "Image Understanding"])
463
+ mode_selector.change(update_image_upload_visibility, inputs=[mode_selector], outputs=[image_upload_ui])
464
+
465
+ # Initial state setup
466
+ demo.load(lambda: self.new_chat_session("Welcome Chat"), outputs=[chatbot_ui, conversation_selector])
467
+
468
+ # Event handlers
469
+ new_chat_btn.click(
470
+ self.new_chat_session,
471
+ inputs=None,
472
+ outputs=[chatbot_ui, conversation_selector]
 
 
 
 
 
 
 
 
 
 
 
473
  )
474
+ conversation_selector.change(
475
+ self.change_chat_session,
476
+ inputs=[conversation_selector],
477
+ outputs=[chatbot_ui]
478
+ )
479
+
480
+ submit_btn.click(
481
+ self.add_message,
482
+ inputs=[
483
+ text_input_ui, image_upload_ui, mode_selector,
484
+ # TTI
485
+ tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
486
+ # Edit
487
+ edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
488
+ # Understand
489
+ und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
490
+ ],
491
+ outputs=[chatbot_ui, text_input_ui, image_upload_ui]
492
+ )
493
+ text_input_ui.submit(
494
+ self.add_message,
495
+ inputs=[
496
+ text_input_ui, image_upload_ui, mode_selector,
497
+ # TTI
498
+ tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
499
+ # Edit
500
+ edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
501
+ # Understand
502
+ und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
503
+ ],
504
+ outputs=[chatbot_ui, text_input_ui, image_upload_ui]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505
  )
506
+
507
+ clear_btn.click(self.clear_history, inputs=None, outputs=[chatbot_ui, text_input_ui, image_upload_ui])
508
 
509
+ return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510
 
511
+ # Main execution
512
+ if __name__ == "__main__":
513
+ app_instance = GradioApp()
514
+ demo_ui = app_instance.build_ui()
515
+ demo_ui.queue().launch(share=True, debug=True) # Set share=True if you need a public link