diff --git "a/modeling/siglip/modeling_siglip.py" "b/modeling/siglip/modeling_siglip.py" --- "a/modeling/siglip/modeling_siglip.py" +++ "b/modeling/siglip/modeling_siglip.py" @@ -1,1557 +1,1557 @@ -# Copyright 2024 The HuggingFace Inc. team. -# SPDX-License-Identifier: Apache-2.0 - -"""PyTorch Siglip model.""" - -import math -import warnings -from dataclasses import dataclass -from typing import Any, Optional, Tuple, Union - -import numpy as np -import torch -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss -from torch.nn.init import _calculate_fan_in_and_fan_out - -from transformers.activations import ACT2FN -from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask -from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - ModelOutput, - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, - logging, - replace_return_docstrings, - torch_int, -) -from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig - - -if is_flash_attn_2_available(): - from transformers.modeling_flash_attention_utils import _flash_attention_forward - - -logger = logging.get_logger(__name__) - -# General docstring -_CONFIG_FOR_DOC = "SiglipConfig" -_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" - - -def _trunc_normal_(tensor, mean, std, a, b): - # Cut & paste from PyTorch official master until it's in a few official releases - RW - # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf - def norm_cdf(x): - # Computes standard normal cumulative distribution function - return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 - - if (mean < a - 2 * std) or (mean > b + 2 * std): - warnings.warn( - "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " - "The distribution of values may be incorrect.", - stacklevel=2, - ) - - # Values are generated by using a truncated uniform distribution and - # then using the inverse CDF for the normal distribution. - # Get upper and lower cdf values - l = norm_cdf((a - mean) / std) - u = norm_cdf((b - mean) / std) - - # Uniformly fill tensor with values from [l, u], then translate to - # [2l-1, 2u-1]. - tensor.uniform_(2 * l - 1, 2 * u - 1) - - # Use inverse cdf transform for normal distribution to get truncated - # standard normal - tensor.erfinv_() - - # Transform to proper mean, std - tensor.mul_(std * math.sqrt(2.0)) - tensor.add_(mean) - - # Clamp to ensure it's in the proper range - tensor.clamp_(min=a, max=b) - - -def trunc_normal_tf_( - tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 -) -> torch.Tensor: - """Fills the input Tensor with values drawn from a truncated - normal distribution. The values are effectively drawn from the - normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` - with values outside :math:`[a, b]` redrawn until they are within - the bounds. The method used for generating the random values works - best when :math:`a \\leq \text{mean} \\leq b`. - - NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the - bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 - and the result is subsequently scaled and shifted by the mean and std args. - - Args: - tensor: an n-dimensional `torch.Tensor` - mean: the mean of the normal distribution - std: the standard deviation of the normal distribution - a: the minimum cutoff value - b: the maximum cutoff value - """ - with torch.no_grad(): - _trunc_normal_(tensor, 0, 1.0, a, b) - tensor.mul_(std).add_(mean) - - -def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): - fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) - if mode == "fan_in": - denom = fan_in - elif mode == "fan_out": - denom = fan_out - elif mode == "fan_avg": - denom = (fan_in + fan_out) / 2 - - variance = scale / denom - - if distribution == "truncated_normal": - # constant is stddev of standard normal truncated to (-2, 2) - trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) - elif distribution == "normal": - with torch.no_grad(): - tensor.normal_(std=math.sqrt(variance)) - elif distribution == "uniform": - bound = math.sqrt(3 * variance) - with torch.no_grad(): - tensor.uniform_(-bound, bound) - else: - raise ValueError(f"invalid distribution {distribution}") - - -def lecun_normal_(tensor): - variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") - - -def default_flax_embed_init(tensor): - variance_scaling_(tensor, mode="fan_in", distribution="normal") - - -@dataclass -# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip -class SiglipVisionModelOutput(ModelOutput): - """ - Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. - - Args: - image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): - The image embeddings obtained by applying the projection layer to the pooler_output. - last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Sequence of hidden-states at the output of the last layer of the model. - hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + - one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. - - Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights after the attention softmax, used to compute the weighted average in the self-attention - heads. - """ - - image_embeds: Optional[torch.FloatTensor] = None - last_hidden_state: torch.FloatTensor = None - hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None - attentions: Optional[Tuple[torch.FloatTensor, ...]] = None - - -@dataclass -# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip -class SiglipTextModelOutput(ModelOutput): - """ - Base class for text model's outputs that also contains a pooling of the last hidden states. - - Args: - text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): - The text embeddings obtained by applying the projection layer to the pooler_output. - last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Sequence of hidden-states at the output of the last layer of the model. - hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + - one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. - - Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights after the attention softmax, used to compute the weighted average in the self-attention - heads. - """ - - text_embeds: Optional[torch.FloatTensor] = None - last_hidden_state: torch.FloatTensor = None - hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None - attentions: Optional[Tuple[torch.FloatTensor, ...]] = None - - -@dataclass -# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip -class SiglipOutput(ModelOutput): - """ - Args: - loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): - Contrastive loss for image-text similarity. - logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): - The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text - similarity scores. - logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): - The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image - similarity scores. - text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): - The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. - image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): - The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. - text_model_output (`BaseModelOutputWithPooling`): - The output of the [`SiglipTextModel`]. - vision_model_output (`BaseModelOutputWithPooling`): - The output of the [`SiglipVisionModel`]. - """ - - loss: Optional[torch.FloatTensor] = None - logits_per_image: torch.FloatTensor = None - logits_per_text: torch.FloatTensor = None - text_embeds: torch.FloatTensor = None - image_embeds: torch.FloatTensor = None - text_model_output: BaseModelOutputWithPooling = None - vision_model_output: BaseModelOutputWithPooling = None - - def to_tuple(self) -> Tuple[Any]: - return tuple( - self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() - for k in self.keys() - ) - - -class SiglipVisionEmbeddings(nn.Module): - def __init__(self, config: SiglipVisionConfig): - super().__init__() - self.config = config - self.embed_dim = config.hidden_size - self.image_size = config.image_size - self.patch_size = config.patch_size - - self.patch_embedding = nn.Conv2d( - in_channels=config.num_channels, - out_channels=self.embed_dim, - kernel_size=self.patch_size, - stride=self.patch_size, - padding="valid", - ) - - self.num_patches = (self.image_size // self.patch_size) ** 2 - self.num_positions = self.num_patches - self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) - self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) - - def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: - """ - This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution - images. This method is also adapted to support torch.jit tracing and no class embeddings. - - Adapted from: - - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 - """ - - num_patches = embeddings.shape[1] - num_positions = self.position_embedding.weight.shape[0] - - # always interpolate when tracing to ensure the exported model works for dynamic input shapes - if not torch.jit.is_tracing() and num_patches == num_positions and height == width: - return self.position_embedding(self.position_ids) - - patch_pos_embed = self.position_embedding.weight.unsqueeze(0) - - dim = embeddings.shape[-1] - - new_height = height // self.patch_size - new_width = width // self.patch_size - - sqrt_num_positions = torch_int(num_positions**0.5) - patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) - patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) - - patch_pos_embed = nn.functional.interpolate( - patch_pos_embed, - size=(new_height, new_width), - mode="bicubic", - align_corners=False, - ) - - patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) - return patch_pos_embed - - def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: - _, _, height, width = pixel_values.shape - patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] - embeddings = patch_embeds.flatten(2).transpose(1, 2) - - if interpolate_pos_encoding: - embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) - else: - embeddings = embeddings + self.position_embedding(self.position_ids) - return embeddings - - -# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip -class SiglipTextEmbeddings(nn.Module): - def __init__(self, config: SiglipTextConfig): - super().__init__() - embed_dim = config.hidden_size - - self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) - self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) - - # position_ids (1, len position emb) is contiguous in memory and exported when serialized - self.register_buffer( - "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False - ) - - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - ) -> torch.Tensor: - seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] - - if position_ids is None: - position_ids = self.position_ids[:, :seq_length] - - if inputs_embeds is None: - inputs_embeds = self.token_embedding(input_ids) - - position_embeddings = self.position_embedding(position_ids) - embeddings = inputs_embeds + position_embeddings - - return embeddings - - -class SiglipAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ - def __init__(self, config): - super().__init__() - self.config = config - self.embed_dim = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.embed_dim // self.num_heads - if self.head_dim * self.num_heads != self.embed_dim: - raise ValueError( - f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" - f" {self.num_heads})." - ) - self.scale = self.head_dim**-0.5 - self.dropout = config.attention_dropout - - self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: - """Input shape: Batch x Time x Channel""" - - batch_size, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - k_v_seq_len = key_states.shape[-2] - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale - - if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): - raise ValueError( - f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): - raise ValueError( - f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" - ) - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - return attn_output, attn_weights - - -class SiglipFlashAttention2(SiglipAttention): - """ - SiglipAttention flash attention module. This module inherits from `SiglipAttention` as the weights of the module stays - untouched. The only required change would be on the forward pass where it needs to correctly call the public API of - flash attention and deal with padding tokens in case the input contains any of them. - """ - - is_causal = False - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() - - # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.LongTensor] = None, - output_attentions: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - output_attentions = False - - batch_size, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - # Flash attention requires the input to have the shape - # batch_size x seq_length x head_dim x hidden_dim - # therefore we just need to keep the original shape - query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache - # to be able to avoid many of these transpose/reshape/view. - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - dropout_rate = self.dropout if self.training else 0.0 - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in the correct dtype just to be sure everything works as expected. - # This might slowdown training & inference so it is recommended to not cast the LayerNorms - # in fp32. - - input_dtype = query_states.dtype - if input_dtype == torch.float32: - if torch.is_autocast_enabled(): - target_dtype = torch.get_autocast_gpu_dtype() - # Handle the case where the model is quantized - elif hasattr(self.config, "_pre_quantization_dtype"): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.q_proj.weight.dtype - - logger.warning_once( - f"The input hidden states seems to be silently casted in float32, this might be related to" - f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" - f" {target_dtype}." - ) - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - attn_output = _flash_attention_forward( - query_states, - key_states, - value_states, - attention_mask, - q_len, - dropout=dropout_rate, - is_causal=self.is_causal, - use_top_left_mask=self._flash_attn_uses_top_left_mask, - ) - - attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() - attn_output = self.out_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights - - -class SiglipSdpaAttention(SiglipAttention): - """ - Siglip attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from - `SiglipAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to - SDPA API. - """ - - is_causal = False - - # Adapted from SiglipAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: - if output_attentions: - # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. - logger.warning_once( - "SiglipModel is using SiglipSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " - 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' - ) - return super().forward( - hidden_states=hidden_states, - attention_mask=attention_mask, - output_attentions=output_attentions, - ) - - batch_size, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) - - # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, - # Reference: https://github.com/pytorch/pytorch/issues/112577. - if query_states.device.type == "cuda" and attention_mask is not None: - query_states = query_states.contiguous() - key_states = key_states.contiguous() - value_states = value_states.contiguous() - - # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment - # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. - is_causal = True if self.is_causal and q_len > 1 else False - - attn_output = torch.nn.functional.scaled_dot_product_attention( - query_states, - key_states, - value_states, - attn_mask=attention_mask, - dropout_p=self.dropout if self.training else 0.0, - is_causal=is_causal, - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.view(batch_size, q_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - return attn_output, None - - -SIGLIP_ATTENTION_CLASSES = { - "eager": SiglipAttention, - "flash_attention_2": SiglipFlashAttention2, - "sdpa": SiglipSdpaAttention, -} - - -# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip -class SiglipMLP(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.activation_fn = ACT2FN[config.hidden_act] - self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) - self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - hidden_states = self.fc1(hidden_states) - hidden_states = self.activation_fn(hidden_states) - hidden_states = self.fc2(hidden_states) - return hidden_states - - -class SiglipEncoderLayer(nn.Module): - def __init__(self, config: SiglipConfig): - super().__init__() - self.embed_dim = config.hidden_size - self.self_attn = SIGLIP_ATTENTION_CLASSES[config._attn_implementation](config=config) - self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) - self.mlp = SiglipMLP(config) - self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) - - # Ignore copy - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: torch.Tensor, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor]: - """ - Args: - hidden_states (`torch.FloatTensor`): - Input to the layer of shape `(batch, seq_len, embed_dim)`. - attention_mask (`torch.FloatTensor`): - Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*, defaults to `False`): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - """ - residual = hidden_states - - hidden_states = self.layer_norm1(hidden_states) - hidden_states, attn_weights = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - output_attentions=output_attentions, - ) - hidden_states = residual + hidden_states - - residual = hidden_states - hidden_states = self.layer_norm2(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (attn_weights,) - - return outputs - - -class SiglipPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = SiglipConfig - base_model_prefix = "siglip" - supports_gradient_checkpointing = True - - _no_split_modules = [ - "SiglipTextEmbeddings", - "SiglipEncoderLayer", - "SiglipVisionEmbeddings", - "SiglipEncoderLayer", - "SiglipMultiheadAttentionPoolingHead", - ] - _supports_flash_attn_2 = True - _supports_sdpa = True - - def _init_weights(self, module): - """Initialize the weights""" - if isinstance(module, SiglipVisionEmbeddings): - width = ( - self.config.vision_config.hidden_size - if isinstance(self.config, SiglipConfig) - else self.config.hidden_size - ) - nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) - elif isinstance(module, nn.Embedding): - default_flax_embed_init(module.weight) - elif isinstance(module, SiglipAttention): - nn.init.xavier_uniform_(module.q_proj.weight) - nn.init.xavier_uniform_(module.k_proj.weight) - nn.init.xavier_uniform_(module.v_proj.weight) - nn.init.xavier_uniform_(module.out_proj.weight) - nn.init.zeros_(module.q_proj.bias) - nn.init.zeros_(module.k_proj.bias) - nn.init.zeros_(module.v_proj.bias) - nn.init.zeros_(module.out_proj.bias) - elif isinstance(module, SiglipMLP): - nn.init.xavier_uniform_(module.fc1.weight) - nn.init.xavier_uniform_(module.fc2.weight) - nn.init.normal_(module.fc1.bias, std=1e-6) - nn.init.normal_(module.fc2.bias, std=1e-6) - elif isinstance(module, SiglipMultiheadAttentionPoolingHead): - nn.init.xavier_uniform_(module.probe.data) - nn.init.xavier_uniform_(module.attention.in_proj_weight.data) - nn.init.zeros_(module.attention.in_proj_bias.data) - elif isinstance(module, SiglipModel): - logit_scale_init = torch.log(torch.tensor(1.0)) - module.logit_scale.data.fill_(logit_scale_init) - module.logit_bias.data.zero_() - elif isinstance(module, SiglipForImageClassification): - nn.init.normal_( - module.classifier.weight, - std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor, - ) - elif isinstance(module, (nn.Linear, nn.Conv2d)): - lecun_normal_(module.weight) - if module.bias is not None: - nn.init.zeros_(module.bias) - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - -SIGLIP_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. - Initializing with a config file does not load the weights associated with the model, only the - configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - -SIGLIP_TEXT_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.max_position_embeddings - 1]`. - - [What are position IDs?](../glossary#position-ids) - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - -SIGLIP_VISION_INPUTS_DOCSTRING = r""" - Args: - pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): - Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using - [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): - Whether to interpolate the pre-trained position encodings. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - -SIGLIP_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.max_position_embeddings - 1]`. - - [What are position IDs?](../glossary#position-ids) - pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): - Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using - [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. - return_loss (`bool`, *optional*): - Whether or not to return the contrastive loss. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): - Whether to interpolate the pre-trained position encodings. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Siglip -class SiglipEncoder(nn.Module): - """ - Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a - [`SiglipEncoderLayer`]. - - Args: - config: SiglipConfig - """ - - def __init__(self, config: SiglipConfig): - super().__init__() - self.config = config - self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) - self.gradient_checkpointing = False - - # Ignore copy - def forward( - self, - inputs_embeds, - attention_mask: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutput]: - r""" - Args: - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. - This is useful if you want more control over how to convert `input_ids` indices into associated vectors - than the model's internal embedding lookup matrix. - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors - for more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - encoder_states = () if output_hidden_states else None - all_attentions = () if output_attentions else None - - hidden_states = inputs_embeds - for encoder_layer in self.layers: - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - encoder_layer.__call__, - hidden_states, - attention_mask, - output_attentions, - ) - else: - layer_outputs = encoder_layer( - hidden_states, - attention_mask, - output_attentions=output_attentions, - ) - - hidden_states = layer_outputs[0] - - if output_attentions: - all_attentions = all_attentions + (layer_outputs[1],) - - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - - if not return_dict: - return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) - return BaseModelOutput( - last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions - ) - - -class SiglipTextTransformer(nn.Module): - def __init__(self, config: SiglipTextConfig): - super().__init__() - self.config = config - embed_dim = config.hidden_size - self.embeddings = SiglipTextEmbeddings(config) - self.encoder = SiglipEncoder(config) - self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) - - self.head = nn.Linear(embed_dim, embed_dim) - self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" - - @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if input_ids is None: - raise ValueError("You have to specify input_ids") - - input_shape = input_ids.size() - input_ids = input_ids.view(-1, input_shape[-1]) - - hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) - - # note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. - # expand attention_mask - if attention_mask is not None and not self._use_flash_attention_2: - # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] - attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) - - encoder_outputs = self.encoder( - inputs_embeds=hidden_states, - attention_mask=attention_mask, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - last_hidden_state = encoder_outputs[0] - last_hidden_state = self.final_layer_norm(last_hidden_state) - - # Assuming "sticky" EOS tokenization, last token is always EOS. - pooled_output = last_hidden_state[:, -1, :] - pooled_output = self.head(pooled_output) - - if not return_dict: - return (last_hidden_state, pooled_output) + encoder_outputs[1:] - - return BaseModelOutputWithPooling( - last_hidden_state=last_hidden_state, - pooler_output=pooled_output, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - ) - - -@add_start_docstrings( - """The text model from SigLIP without any head or projection on top.""", - SIGLIP_START_DOCSTRING, -) -class SiglipTextModel(SiglipPreTrainedModel): - config_class = SiglipTextConfig - - def __init__(self, config: SiglipTextConfig): - super().__init__(config) - self.text_model = SiglipTextTransformer(config) - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self) -> nn.Module: - return self.text_model.embeddings.token_embedding - - def set_input_embeddings(self, value): - self.text_model.embeddings.token_embedding = value - - @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - Examples: - - ```python - >>> from transformers import AutoTokenizer, SiglipTextModel - - >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") - >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") - - >>> # important: make sure to set padding="max_length" as that's how the model was trained - >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") - - >>> outputs = model(**inputs) - >>> last_hidden_state = outputs.last_hidden_state - >>> pooled_output = outputs.pooler_output # pooled (EOS token) states - ```""" - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - return self.text_model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - -class SiglipVisionTransformer(nn.Module): - def __init__(self, config: SiglipVisionConfig): - super().__init__() - self.config = config - embed_dim = config.hidden_size - - self.embeddings = SiglipVisionEmbeddings(config) - self.encoder = SiglipEncoder(config) - self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) - self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head - if self.use_head: - self.head = SiglipMultiheadAttentionPoolingHead(config) - - @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) - def forward( - self, - pixel_values, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - interpolate_pos_encoding: Optional[bool] = False, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) - - encoder_outputs = self.encoder( - inputs_embeds=hidden_states, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - last_hidden_state = encoder_outputs[0] - last_hidden_state = self.post_layernorm(last_hidden_state) - - pooler_output = self.head(last_hidden_state) if self.use_head else None - if not return_dict: - return (last_hidden_state, pooler_output) + encoder_outputs[1:] - - return BaseModelOutputWithPooling( - last_hidden_state=last_hidden_state, - pooler_output=pooler_output, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - ) - - -class SiglipMultiheadAttentionPoolingHead(nn.Module): - """Multihead Attention Pooling.""" - - def __init__(self, config: SiglipVisionConfig): - super().__init__() - - self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) - self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) - self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.mlp = SiglipMLP(config) - - def forward(self, hidden_state): - batch_size = hidden_state.shape[0] - probe = self.probe.repeat(batch_size, 1, 1) - - hidden_state = self.attention(probe, hidden_state, hidden_state)[0] - - residual = hidden_state - hidden_state = self.layernorm(hidden_state) - hidden_state = residual + self.mlp(hidden_state) - - return hidden_state[:, 0] - - -@add_start_docstrings( - """The vision model from SigLIP without any head or projection on top.""", - SIGLIP_START_DOCSTRING, -) -class SiglipVisionModel(SiglipPreTrainedModel): - config_class = SiglipVisionConfig - main_input_name = "pixel_values" - - def __init__(self, config: SiglipVisionConfig): - super().__init__(config) - - self.vision_model = SiglipVisionTransformer(config) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self) -> nn.Module: - return self.vision_model.embeddings.patch_embedding - - @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) - def forward( - self, - pixel_values, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - interpolate_pos_encoding: bool = False, - ) -> Union[Tuple, BaseModelOutputWithPooling]: - r""" - Returns: - - Examples: - - ```python - >>> from PIL import Image - >>> import requests - >>> from transformers import AutoProcessor, SiglipVisionModel - - >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") - >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") - - >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" - >>> image = Image.open(requests.get(url, stream=True).raw) - - >>> inputs = processor(images=image, return_tensors="pt") - - >>> outputs = model(**inputs) - >>> last_hidden_state = outputs.last_hidden_state - >>> pooled_output = outputs.pooler_output # pooled features - ```""" - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - return self.vision_model( - pixel_values=pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - interpolate_pos_encoding=interpolate_pos_encoding, - ) - - -@add_start_docstrings(SIGLIP_START_DOCSTRING) -class SiglipModel(SiglipPreTrainedModel): - config_class = SiglipConfig - - def __init__(self, config: SiglipConfig): - super().__init__(config) - - if not isinstance(config.text_config, SiglipTextConfig): - raise TypeError( - "config.text_config is expected to be of type SiglipTextConfig but is of type" - f" {type(config.text_config)}." - ) - - if not isinstance(config.vision_config, SiglipVisionConfig): - raise TypeError( - "config.vision_config is expected to be of type SiglipVisionConfig but is of type" - f" {type(config.vision_config)}." - ) - - text_config = config.text_config - vision_config = config.vision_config - - # First, initialize the text and vision models with proper attention implementation - text_model = SiglipTextModel._from_config(text_config) - vision_model = SiglipVisionModel._from_config(vision_config) - - # Second, get the text and vision submodules (for backward compatibility) - self.text_model = text_model.text_model - self.vision_model = vision_model.vision_model - - self.logit_scale = nn.Parameter(torch.randn(1)) - self.logit_bias = nn.Parameter(torch.randn(1)) - - # Initialize weights and apply final processing - self.post_init() - - @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) - def get_text_features( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> torch.FloatTensor: - r""" - Returns: - text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by - applying the projection layer to the pooled output of [`SiglipTextModel`]. - - Examples: - - ```python - >>> from transformers import AutoTokenizer, AutoModel - >>> import torch - - >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") - >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") - - >>> # important: make sure to set padding="max_length" as that's how the model was trained - >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") - >>> with torch.no_grad(): - ... text_features = model.get_text_features(**inputs) - ```""" - # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - text_outputs = self.text_model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - pooled_output = text_outputs[1] - - return pooled_output - - @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) - def get_image_features( - self, - pixel_values: Optional[torch.FloatTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - interpolate_pos_encoding: bool = False, - ) -> torch.FloatTensor: - r""" - Returns: - image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by - applying the projection layer to the pooled output of [`SiglipVisionModel`]. - - Examples: - - ```python - >>> from PIL import Image - >>> import requests - >>> from transformers import AutoProcessor, AutoModel - >>> import torch - - >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") - >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") - - >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" - >>> image = Image.open(requests.get(url, stream=True).raw) - - >>> inputs = processor(images=image, return_tensors="pt") - - >>> with torch.no_grad(): - ... image_features = model.get_image_features(**inputs) - ```""" - # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - vision_outputs = self.vision_model( - pixel_values=pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - interpolate_pos_encoding=interpolate_pos_encoding, - ) - - pooled_output = vision_outputs[1] - - return pooled_output - - @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - pixel_values: Optional[torch.FloatTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - return_loss: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - interpolate_pos_encoding: bool = False, - ) -> Union[Tuple, SiglipOutput]: - r""" - Returns: - - Examples: - - ```python - >>> from PIL import Image - >>> import requests - >>> from transformers import AutoProcessor, AutoModel - >>> import torch - - >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") - >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") - - >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" - >>> image = Image.open(requests.get(url, stream=True).raw) - - >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] - >>> # important: we pass `padding=max_length` since the model was trained with this - >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") - - >>> with torch.no_grad(): - ... outputs = model(**inputs) - - >>> logits_per_image = outputs.logits_per_image - >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities - >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") - 31.9% that image 0 is 'a photo of 2 cats' - ```""" - # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - vision_outputs = self.vision_model( - pixel_values=pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - interpolate_pos_encoding=interpolate_pos_encoding, - ) - - text_outputs = self.text_model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - image_embeds = vision_outputs[1] - text_embeds = text_outputs[1] - - # normalized features - image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) - text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) - - # cosine similarity as logits - logits_per_text = ( - torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * self.logit_scale.exp() - + self.logit_bias - ) - logits_per_image = logits_per_text.t() - - loss = None - if return_loss: - # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287 - eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) - m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye - loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) - nll = -torch.sum(loglik, dim=-1) - loss = nll.mean() - - if not return_dict: - output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) - return ((loss,) + output) if loss is not None else output - - return SiglipOutput( - loss=loss, - logits_per_image=logits_per_image, - logits_per_text=logits_per_text, - text_embeds=text_embeds, - image_embeds=image_embeds, - text_model_output=text_outputs, - vision_model_output=vision_outputs, - ) - - -@add_start_docstrings( - """ - SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of - the patch tokens) e.g. for ImageNet. - """, - SIGLIP_START_DOCSTRING, -) -class SiglipForImageClassification(SiglipPreTrainedModel): - main_input_name = "pixel_values" - - def __init__(self, config: SiglipConfig) -> None: - super().__init__(config) - - self.num_labels = config.num_labels - - # Create the vision model with proper attention - # and take only vision_model submodule (for backward compatibility) - vision_model = SiglipVisionModel._from_config(config.vision_config) - self.vision_model = vision_model.vision_model - - # Classifier head - self.classifier = ( - nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() - ) - - # Initialize weights and apply final processing - self.post_init() - - @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) - def forward( - self, - pixel_values: Optional[torch.Tensor] = None, - labels: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - interpolate_pos_encoding: bool = False, - ) -> Union[tuple, ImageClassifierOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the image classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - - Returns: - - Examples: - - ```python - >>> from transformers import AutoImageProcessor, SiglipForImageClassification - >>> import torch - >>> from PIL import Image - >>> import requests - - >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT - >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" - >>> image = Image.open(requests.get(url, stream=True).raw) - - >>> # note: we are loading a `SiglipModel` from the hub here, - >>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above. - >>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224") - >>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224") - - >>> inputs = image_processor(images=image, return_tensors="pt") - >>> outputs = model(**inputs) - >>> logits = outputs.logits - >>> # model predicts one of the two classes - >>> predicted_class_idx = logits.argmax(-1).item() - >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) - Predicted class: LABEL_1 - ```""" - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - outputs = self.vision_model( - pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - interpolate_pos_encoding=interpolate_pos_encoding, - ) - - sequence_output = outputs[0] - - # average pool the patch tokens - sequence_output = torch.mean(sequence_output, dim=1) - # apply classifier - logits = self.classifier(sequence_output) - - loss = None - if labels is not None: - # move labels to correct device to enable model parallelism - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(logits, labels) - - if not return_dict: - output = (logits,) + outputs[2:] - return ((loss,) + output) if loss is not None else output - - return ImageClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) +# Copyright 2024 The HuggingFace Inc. team. +# SPDX-License-Identifier: Apache-2.0 + +"""PyTorch Siglip model.""" + +import math +import warnings +from dataclasses import dataclass +from typing import Any, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss +from torch.nn.init import _calculate_fan_in_and_fan_out + +from transformers.activations import ACT2FN +from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask +from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, + torch_int, +) +from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig + + +if is_flash_attn_2_available(): + from transformers.modeling_flash_attention_utils import _flash_attention_forward + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "SiglipConfig" +_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" + + +def _trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + + +def trunc_normal_tf_( + tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 +) -> torch.Tensor: + """Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \\leq \text{mean} \\leq b`. + + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsequently scaled and shifted by the mean and std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + """ + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") + + +def default_flax_embed_init(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="normal") + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip +class SiglipVisionModelOutput(ModelOutput): + """ + Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. + + Args: + image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The image embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + image_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip +class SiglipTextModelOutput(ModelOutput): + """ + Base class for text model's outputs that also contains a pooling of the last hidden states. + + Args: + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The text embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + text_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip +class SiglipOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for image-text similarity. + logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): + The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text + similarity scores. + logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): + The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image + similarity scores. + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. + image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): + The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. + text_model_output (`BaseModelOutputWithPooling`): + The output of the [`SiglipTextModel`]. + vision_model_output (`BaseModelOutputWithPooling`): + The output of the [`SiglipVisionModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_image: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + image_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + vision_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +class SiglipVisionEmbeddings(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.embed_dim, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + ) + + self.num_patches = (self.image_size // self.patch_size) ** 2 + self.num_positions = self.num_patches + self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) + self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution + images. This method is also adapted to support torch.jit tracing and no class embeddings. + + Adapted from: + - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and + - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 + """ + + num_patches = embeddings.shape[1] + num_positions = self.position_embedding.weight.shape[0] + + # always interpolate when tracing to ensure the exported model works for dynamic input shapes + if not torch.jit.is_tracing() and num_patches == num_positions and height == width: + return self.position_embedding(self.position_ids) + + patch_pos_embed = self.position_embedding.weight.unsqueeze(0) + + dim = embeddings.shape[-1] + + new_height = height // self.patch_size + new_width = width // self.patch_size + + sqrt_num_positions = torch_int(num_positions**0.5) + patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + size=(new_height, new_width), + mode="bicubic", + align_corners=False, + ) + + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return patch_pos_embed + + def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: + _, _, height, width = pixel_values.shape + patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] + embeddings = patch_embeds.flatten(2).transpose(1, 2) + + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embedding(self.position_ids) + return embeddings + + +# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip +class SiglipTextEmbeddings(nn.Module): + def __init__(self, config: SiglipTextConfig): + super().__init__() + embed_dim = config.hidden_size + + self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) + self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if inputs_embeds is None: + inputs_embeds = self.token_embedding(input_ids) + + position_embeddings = self.position_embedding(position_ids) + embeddings = inputs_embeds + position_embeddings + + return embeddings + + +class SiglipAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """Input shape: Batch x Time x Channel""" + + batch_size, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + k_v_seq_len = key_states.shape[-2] + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale + + if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): + raise ValueError( + f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class SiglipFlashAttention2(SiglipAttention): + """ + SiglipAttention flash attention module. This module inherits from `SiglipAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + is_causal = False + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + # Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + output_attentions = False + + batch_size, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = _flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + is_causal=self.is_causal, + use_top_left_mask=self._flash_attn_uses_top_left_mask, + ) + + attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() + attn_output = self.out_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights + + +class SiglipSdpaAttention(SiglipAttention): + """ + Siglip attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `SiglipAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + is_causal = False + + # Adapted from SiglipAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "SiglipModel is using SiglipSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + + batch_size, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and attention_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + is_causal = True if self.is_causal and q_len > 1 else False + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + dropout_p=self.dropout if self.training else 0.0, + is_causal=is_causal, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(batch_size, q_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, None + + +SIGLIP_ATTENTION_CLASSES = { + "eager": SiglipAttention, + "flash_attention_2": SiglipFlashAttention2, + "sdpa": SiglipSdpaAttention, +} + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip +class SiglipMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class SiglipEncoderLayer(nn.Module): + def __init__(self, config: SiglipConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = SIGLIP_ATTENTION_CLASSES[config._attn_implementation](config=config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = SiglipMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + # Ignore copy + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): + Input to the layer of shape `(batch, seq_len, embed_dim)`. + attention_mask (`torch.FloatTensor`): + Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class SiglipPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SiglipConfig + base_model_prefix = "siglip" + supports_gradient_checkpointing = True + + _no_split_modules = [ + "SiglipTextEmbeddings", + "SiglipEncoderLayer", + "SiglipVisionEmbeddings", + "SiglipEncoderLayer", + "SiglipMultiheadAttentionPoolingHead", + ] + _supports_flash_attn_2 = True + _supports_sdpa = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, SiglipVisionEmbeddings): + width = ( + self.config.vision_config.hidden_size + if isinstance(self.config, SiglipConfig) + else self.config.hidden_size + ) + nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) + elif isinstance(module, nn.Embedding): + default_flax_embed_init(module.weight) + elif isinstance(module, SiglipAttention): + nn.init.xavier_uniform_(module.q_proj.weight) + nn.init.xavier_uniform_(module.k_proj.weight) + nn.init.xavier_uniform_(module.v_proj.weight) + nn.init.xavier_uniform_(module.out_proj.weight) + nn.init.zeros_(module.q_proj.bias) + nn.init.zeros_(module.k_proj.bias) + nn.init.zeros_(module.v_proj.bias) + nn.init.zeros_(module.out_proj.bias) + elif isinstance(module, SiglipMLP): + nn.init.xavier_uniform_(module.fc1.weight) + nn.init.xavier_uniform_(module.fc2.weight) + nn.init.normal_(module.fc1.bias, std=1e-6) + nn.init.normal_(module.fc2.bias, std=1e-6) + elif isinstance(module, SiglipMultiheadAttentionPoolingHead): + nn.init.xavier_uniform_(module.probe.data) + nn.init.xavier_uniform_(module.attention.in_proj_weight.data) + nn.init.zeros_(module.attention.in_proj_bias.data) + elif isinstance(module, SiglipModel): + logit_scale_init = torch.log(torch.tensor(1.0)) + module.logit_scale.data.fill_(logit_scale_init) + module.logit_bias.data.zero_() + elif isinstance(module, SiglipForImageClassification): + nn.init.normal_( + module.classifier.weight, + std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor, + ) + elif isinstance(module, (nn.Linear, nn.Conv2d)): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +SIGLIP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +SIGLIP_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +SIGLIP_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +SIGLIP_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Siglip +class SiglipEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`SiglipEncoderLayer`]. + + Args: + config: SiglipConfig + """ + + def __init__(self, config: SiglipConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + # Ignore copy + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for encoder_layer in self.layers: + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class SiglipTextTransformer(nn.Module): + def __init__(self, config: SiglipTextConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + self.embeddings = SiglipTextEmbeddings(config) + self.encoder = SiglipEncoder(config) + self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + self.head = nn.Linear(embed_dim, embed_dim) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None: + raise ValueError("You have to specify input_ids") + + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + + hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) + + # note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. + # expand attention_mask + if attention_mask is not None and not self._use_flash_attention_2: + # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.final_layer_norm(last_hidden_state) + + # Assuming "sticky" EOS tokenization, last token is always EOS. + pooled_output = last_hidden_state[:, -1, :] + pooled_output = self.head(pooled_output) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """The text model from SigLIP without any head or projection on top.""", + SIGLIP_START_DOCSTRING, +) +class SiglipTextModel(SiglipPreTrainedModel): + config_class = SiglipTextConfig + + def __init__(self, config: SiglipTextConfig): + super().__init__(config) + self.text_model = SiglipTextTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.token_embedding + + def set_input_embeddings(self, value): + self.text_model.embeddings.token_embedding = value + + @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, SiglipTextModel + + >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") + >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") + + >>> # important: make sure to set padding="max_length" as that's how the model was trained + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled (EOS token) states + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + return self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class SiglipVisionTransformer(nn.Module): + def __init__(self, config: SiglipVisionConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + + self.embeddings = SiglipVisionEmbeddings(config) + self.encoder = SiglipEncoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head + if self.use_head: + self.head = SiglipMultiheadAttentionPoolingHead(config) + + @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) + def forward( + self, + pixel_values, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = False, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.post_layernorm(last_hidden_state) + + pooler_output = self.head(last_hidden_state) if self.use_head else None + if not return_dict: + return (last_hidden_state, pooler_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooler_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class SiglipMultiheadAttentionPoolingHead(nn.Module): + """Multihead Attention Pooling.""" + + def __init__(self, config: SiglipVisionConfig): + super().__init__() + + self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.mlp = SiglipMLP(config) + + def forward(self, hidden_state): + batch_size = hidden_state.shape[0] + probe = self.probe.repeat(batch_size, 1, 1) + + hidden_state = self.attention(probe, hidden_state, hidden_state)[0] + + residual = hidden_state + hidden_state = self.layernorm(hidden_state) + hidden_state = residual + self.mlp(hidden_state) + + return hidden_state[:, 0] + + +@add_start_docstrings( + """The vision model from SigLIP without any head or projection on top.""", + SIGLIP_START_DOCSTRING, +) +class SiglipVisionModel(SiglipPreTrainedModel): + config_class = SiglipVisionConfig + main_input_name = "pixel_values" + + def __init__(self, config: SiglipVisionConfig): + super().__init__(config) + + self.vision_model = SiglipVisionTransformer(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.vision_model.embeddings.patch_embedding + + @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) + def forward( + self, + pixel_values, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + interpolate_pos_encoding: bool = False, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, SiglipVisionModel + + >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") + >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled features + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + return self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, + ) + + +@add_start_docstrings(SIGLIP_START_DOCSTRING) +class SiglipModel(SiglipPreTrainedModel): + config_class = SiglipConfig + + def __init__(self, config: SiglipConfig): + super().__init__(config) + + if not isinstance(config.text_config, SiglipTextConfig): + raise TypeError( + "config.text_config is expected to be of type SiglipTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.vision_config, SiglipVisionConfig): + raise TypeError( + "config.vision_config is expected to be of type SiglipVisionConfig but is of type" + f" {type(config.vision_config)}." + ) + + text_config = config.text_config + vision_config = config.vision_config + + # First, initialize the text and vision models with proper attention implementation + text_model = SiglipTextModel._from_config(text_config) + vision_model = SiglipVisionModel._from_config(vision_config) + + # Second, get the text and vision submodules (for backward compatibility) + self.text_model = text_model.text_model + self.vision_model = vision_model.vision_model + + self.logit_scale = nn.Parameter(torch.randn(1)) + self.logit_bias = nn.Parameter(torch.randn(1)) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`SiglipTextModel`]. + + Examples: + + ```python + >>> from transformers import AutoTokenizer, AutoModel + >>> import torch + + >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") + >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") + + >>> # important: make sure to set padding="max_length" as that's how the model was trained + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") + >>> with torch.no_grad(): + ... text_features = model.get_text_features(**inputs) + ```""" + # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] + + return pooled_output + + @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) + def get_image_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.FloatTensor: + r""" + Returns: + image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by + applying the projection layer to the pooled output of [`SiglipVisionModel`]. + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, AutoModel + >>> import torch + + >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") + >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> with torch.no_grad(): + ... image_features = model.get_image_features(**inputs) + ```""" + # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, + ) + + pooled_output = vision_outputs[1] + + return pooled_output + + @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + pixel_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + interpolate_pos_encoding: bool = False, + ) -> Union[Tuple, SiglipOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, AutoModel + >>> import torch + + >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") + >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] + >>> # important: we pass `padding=max_length` since the model was trained with this + >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> logits_per_image = outputs.logits_per_image + >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities + >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") + 31.9% that image 0 is 'a photo of 2 cats' + ```""" + # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + image_embeds = vision_outputs[1] + text_embeds = text_outputs[1] + + # normalized features + image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) + + # cosine similarity as logits + logits_per_text = ( + torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * self.logit_scale.exp() + + self.logit_bias + ) + logits_per_image = logits_per_text.t() + + loss = None + if return_loss: + # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287 + eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) + m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye + loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) + nll = -torch.sum(loglik, dim=-1) + loss = nll.mean() + + if not return_dict: + output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) + return ((loss,) + output) if loss is not None else output + + return SiglipOutput( + loss=loss, + logits_per_image=logits_per_image, + logits_per_text=logits_per_text, + text_embeds=text_embeds, + image_embeds=image_embeds, + text_model_output=text_outputs, + vision_model_output=vision_outputs, + ) + + +@add_start_docstrings( + """ + SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of + the patch tokens) e.g. for ImageNet. + """, + SIGLIP_START_DOCSTRING, +) +class SiglipForImageClassification(SiglipPreTrainedModel): + main_input_name = "pixel_values" + + def __init__(self, config: SiglipConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + + # Create the vision model with proper attention + # and take only vision_model submodule (for backward compatibility) + vision_model = SiglipVisionModel._from_config(config.vision_config) + self.vision_model = vision_model.vision_model + + # Classifier head + self.classifier = ( + nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + interpolate_pos_encoding: bool = False, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, SiglipForImageClassification + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> # note: we are loading a `SiglipModel` from the hub here, + >>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above. + >>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224") + >>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> # model predicts one of the two classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: LABEL_1 + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vision_model( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + interpolate_pos_encoding=interpolate_pos_encoding, + ) + + sequence_output = outputs[0] + + # average pool the patch tokens + sequence_output = torch.mean(sequence_output, dim=1) + # apply classifier + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )