Spaces:
Running
on
Zero
Running
on
Zero
Update inferencer.py
Browse files- inferencer.py +312 -312
inferencer.py
CHANGED
@@ -1,312 +1,312 @@
|
|
1 |
-
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
from copy import deepcopy
|
5 |
-
from typing import List, Dict, Tuple, Optional, Union, Any
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
from PIL import Image
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torch import nn
|
12 |
-
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
-
from transformers.configuration_utils import PretrainedConfig
|
14 |
-
from transformers.modeling_utils import PreTrainedModel
|
15 |
-
|
16 |
-
from data.data_utils import pil_img2rgb
|
17 |
-
from modeling.bagel.qwen2_navit import NaiveCache
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer.
|
22 |
-
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''
|
23 |
-
|
24 |
-
GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
|
25 |
-
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
|
26 |
-
|
27 |
-
|
28 |
-
class InterleaveInferencer:
|
29 |
-
def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
|
30 |
-
self.model = model
|
31 |
-
self.vae_model = vae_model
|
32 |
-
self.tokenizer = tokenizer
|
33 |
-
self.vae_transform = vae_transform
|
34 |
-
self.vit_transform = vit_transform
|
35 |
-
self.new_token_ids = new_token_ids
|
36 |
-
|
37 |
-
def init_gen_context(self):
|
38 |
-
gen_context = {
|
39 |
-
'kv_lens': [0],
|
40 |
-
'ropes': [0],
|
41 |
-
'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
|
42 |
-
}
|
43 |
-
return gen_context
|
44 |
-
|
45 |
-
@torch.no_grad()
|
46 |
-
def update_context_text(self, text, gen_context):
|
47 |
-
# used for interleave data, currently only support 1 data inference,
|
48 |
-
|
49 |
-
past_key_values = gen_context['past_key_values']
|
50 |
-
kv_lens = gen_context['kv_lens']
|
51 |
-
ropes = gen_context['ropes']
|
52 |
-
generation_input, kv_lens, ropes = self.model.prepare_prompts(
|
53 |
-
curr_kvlens=kv_lens,
|
54 |
-
curr_rope=ropes,
|
55 |
-
prompts=[text],
|
56 |
-
tokenizer=self.tokenizer,
|
57 |
-
new_token_ids=self.new_token_ids,
|
58 |
-
)
|
59 |
-
|
60 |
-
past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)
|
61 |
-
gen_context['kv_lens'] = kv_lens
|
62 |
-
gen_context['ropes'] = ropes
|
63 |
-
gen_context['past_key_values'] = past_key_values
|
64 |
-
|
65 |
-
return gen_context
|
66 |
-
|
67 |
-
@torch.no_grad()
|
68 |
-
def update_context_image(self, image, gen_context, vae=True, vit=True):
|
69 |
-
# used for interleave data, currently only support 1 data inference,
|
70 |
-
|
71 |
-
assert vae or vit
|
72 |
-
past_key_values = gen_context['past_key_values']
|
73 |
-
kv_lens = gen_context['kv_lens']
|
74 |
-
ropes = gen_context['ropes']
|
75 |
-
|
76 |
-
if vae:
|
77 |
-
## update vae
|
78 |
-
generation_input, kv_lens, ropes = self.model.prepare_vae_images(
|
79 |
-
curr_kvlens=kv_lens,
|
80 |
-
curr_rope=ropes,
|
81 |
-
images=[image],
|
82 |
-
transforms=self.vae_transform,
|
83 |
-
new_token_ids=self.new_token_ids,
|
84 |
-
)
|
85 |
-
past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
|
86 |
-
|
87 |
-
if vit:
|
88 |
-
## update vit
|
89 |
-
generation_input, kv_lens, ropes = self.model.prepare_vit_images(
|
90 |
-
curr_kvlens=kv_lens,
|
91 |
-
curr_rope=ropes,
|
92 |
-
images=[image],
|
93 |
-
transforms=self.vit_transform,
|
94 |
-
new_token_ids=self.new_token_ids,
|
95 |
-
)
|
96 |
-
past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)
|
97 |
-
|
98 |
-
gen_context['kv_lens'] = kv_lens
|
99 |
-
gen_context['ropes'] = ropes
|
100 |
-
gen_context['past_key_values'] = past_key_values
|
101 |
-
|
102 |
-
return gen_context
|
103 |
-
|
104 |
-
@torch.no_grad()
|
105 |
-
def gen_image(
|
106 |
-
self,
|
107 |
-
image_shape,
|
108 |
-
gen_context,
|
109 |
-
cfg_text_scale=4.0,
|
110 |
-
cfg_img_scale=1.5,
|
111 |
-
|
112 |
-
cfg_text_precontext=None,
|
113 |
-
cfg_img_precontext=None,
|
114 |
-
cfg_interval=(0.4, 1.0),
|
115 |
-
cfg_renorm_min=0.0,
|
116 |
-
cfg_renorm_type="global",
|
117 |
-
|
118 |
-
num_timesteps=50,
|
119 |
-
timestep_shift=3.0
|
120 |
-
):
|
121 |
-
# print(cfg_renorm_type)
|
122 |
-
past_key_values = gen_context['past_key_values']
|
123 |
-
kv_lens = gen_context['kv_lens']
|
124 |
-
ropes = gen_context['ropes']
|
125 |
-
generation_input = self.model.prepare_vae_latent(
|
126 |
-
curr_kvlens=kv_lens,
|
127 |
-
curr_rope=ropes,
|
128 |
-
image_sizes=[image_shape],
|
129 |
-
new_token_ids=self.new_token_ids,
|
130 |
-
)
|
131 |
-
|
132 |
-
# text cfg
|
133 |
-
cfg_text_past_key_values = cfg_text_precontext['past_key_values']
|
134 |
-
kv_lens_cfg = cfg_text_precontext['kv_lens']
|
135 |
-
ropes_cfg = cfg_text_precontext['ropes']
|
136 |
-
generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
|
137 |
-
curr_kvlens=kv_lens_cfg,
|
138 |
-
curr_rope=ropes_cfg,
|
139 |
-
image_sizes=[image_shape],
|
140 |
-
)
|
141 |
-
|
142 |
-
# img cfg
|
143 |
-
cfg_img_past_key_values = cfg_img_precontext['past_key_values']
|
144 |
-
kv_lens_cfg = cfg_img_precontext['kv_lens']
|
145 |
-
ropes_cfg = cfg_img_precontext['ropes']
|
146 |
-
generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
|
147 |
-
curr_kvlens=kv_lens_cfg,
|
148 |
-
curr_rope=ropes_cfg,
|
149 |
-
image_sizes=[image_shape],
|
150 |
-
)
|
151 |
-
|
152 |
-
unpacked_latent = self.model.generate_image(
|
153 |
-
past_key_values=past_key_values,
|
154 |
-
cfg_text_past_key_values=cfg_text_past_key_values,
|
155 |
-
cfg_img_past_key_values=cfg_img_past_key_values,
|
156 |
-
num_timesteps=num_timesteps,
|
157 |
-
cfg_text_scale=cfg_text_scale,
|
158 |
-
cfg_img_scale=cfg_img_scale,
|
159 |
-
cfg_interval=cfg_interval,
|
160 |
-
cfg_renorm_min=cfg_renorm_min,
|
161 |
-
cfg_renorm_type=cfg_renorm_type,
|
162 |
-
timestep_shift=timestep_shift,
|
163 |
-
**generation_input,
|
164 |
-
cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
|
165 |
-
cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
|
166 |
-
cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
|
167 |
-
cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
|
168 |
-
cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
|
169 |
-
cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
|
170 |
-
cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
|
171 |
-
cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
|
172 |
-
)
|
173 |
-
|
174 |
-
image = self.decode_image(unpacked_latent[0], image_shape)
|
175 |
-
return image
|
176 |
-
|
177 |
-
|
178 |
-
def decode_image(self, latent, image_shape):
|
179 |
-
H, W = image_shape
|
180 |
-
h, w = H // self.model.latent_downsample, W // self.model.latent_downsample
|
181 |
-
|
182 |
-
latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
|
183 |
-
latent = torch.einsum("nhwpqc->nchpwq", latent)
|
184 |
-
latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
|
185 |
-
image = self.vae_model.decode(latent)
|
186 |
-
image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
|
187 |
-
image = Image.fromarray((image).to(torch.uint8).cpu().numpy())
|
188 |
-
|
189 |
-
return image
|
190 |
-
|
191 |
-
@torch.no_grad()
|
192 |
-
def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
|
193 |
-
gen_context = deepcopy(gen_context)
|
194 |
-
past_key_values = gen_context['past_key_values']
|
195 |
-
kv_lens = gen_context['kv_lens']
|
196 |
-
ropes = gen_context['ropes']
|
197 |
-
|
198 |
-
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
199 |
-
for unpacked_latent in self.model.generate_text(
|
200 |
-
past_key_values=past_key_values,
|
201 |
-
max_length=max_length,
|
202 |
-
do_sample=do_sample,
|
203 |
-
temperature=temperature,
|
204 |
-
end_token_id=self.new_token_ids['eos_token_id'],
|
205 |
-
**generation_input,
|
206 |
-
):
|
207 |
-
output = self.tokenizer.decode(unpacked_latent
|
208 |
-
# output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
|
209 |
-
yield output
|
210 |
-
|
211 |
-
@torch.no_grad()
|
212 |
-
def interleave_inference(
|
213 |
-
self,
|
214 |
-
input_lists: List[Union[str, Image.Image]],
|
215 |
-
think=False,
|
216 |
-
understanding_output=False,
|
217 |
-
max_think_token_n=1000,
|
218 |
-
do_sample=False, # for gen_text
|
219 |
-
temperature=0.3, # for gen_text
|
220 |
-
# gen_image kargs
|
221 |
-
cfg_text_scale=3.0,
|
222 |
-
cfg_img_scale=1.5,
|
223 |
-
cfg_interval=[0.4, 1.0],
|
224 |
-
timestep_shift=3.0,
|
225 |
-
num_timesteps=50,
|
226 |
-
cfg_renorm_min=0.0,
|
227 |
-
cfg_renorm_type="global",
|
228 |
-
image_shapes=(1024, 1024), # Default, can be overridden by actual input image
|
229 |
-
):
|
230 |
-
gen_context = self.init_gen_context()
|
231 |
-
cfg_text_context = self.init_gen_context()
|
232 |
-
cfg_img_context = self.init_gen_context()
|
233 |
-
|
234 |
-
current_image_shapes = image_shapes
|
235 |
-
|
236 |
-
# Use torch.cuda.amp.autocast if available, otherwise a simple context manager
|
237 |
-
# For simplicity, assuming it's handled externally or not strictly needed for this snippet
|
238 |
-
# with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
239 |
-
|
240 |
-
if think:
|
241 |
-
system_prompt = VLM_THINK_SYSTEM_PROMPT if understanding_output else GEN_THINK_SYSTEM_PROMPT
|
242 |
-
gen_context = self.update_context_text(system_prompt, gen_context)
|
243 |
-
cfg_text_context = self.update_context_text(system_prompt, cfg_text_context)
|
244 |
-
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
|
245 |
-
|
246 |
-
for input_term in input_lists:
|
247 |
-
if isinstance(input_term, str):
|
248 |
-
gen_context = self.update_context_text(input_term, gen_context)
|
249 |
-
cfg_text_context = self.update_context_text(input_term, cfg_text_context)
|
250 |
-
cfg_img_context = self.update_context_text(input_term, cfg_img_context)
|
251 |
-
elif isinstance(input_term, Image.Image):
|
252 |
-
current_image_shapes = input_term.size[::-1] # H, W
|
253 |
-
use_vae_for_input_image = not understanding_output
|
254 |
-
gen_context = self.update_context_image(input_term, gen_context, vae=use_vae_for_input_image, vit=True)
|
255 |
-
cfg_text_context = self.update_context_image(input_term, cfg_text_context, vae=use_vae_for_input_image, vit=True)
|
256 |
-
# cfg_img_context does not typically see input images
|
257 |
-
else:
|
258 |
-
raise ValueError(f"Unsupported input type: {type(input_term)}")
|
259 |
-
|
260 |
-
if understanding_output: # Generate text
|
261 |
-
yield from self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature)
|
262 |
-
else: # Generate image
|
263 |
-
if think:
|
264 |
-
thought_text_parts = []
|
265 |
-
for part in self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature):
|
266 |
-
yield part # Stream the thought
|
267 |
-
thought_text_parts.append(part)
|
268 |
-
full_thought_text = "".join(thought_text_parts)
|
269 |
-
if full_thought_text: # Only update if thought was generated
|
270 |
-
gen_context = self.update_context_text(full_thought_text, gen_context)
|
271 |
-
cfg_text_context = self.update_context_text(full_thought_text, cfg_text_context)
|
272 |
-
|
273 |
-
img = self.gen_image(
|
274 |
-
image_shape=current_image_shapes,
|
275 |
-
gen_context=gen_context,
|
276 |
-
cfg_text_precontext=cfg_text_context,
|
277 |
-
cfg_img_precontext=cfg_img_context,
|
278 |
-
cfg_text_scale=cfg_text_scale,
|
279 |
-
cfg_img_scale=cfg_img_scale,
|
280 |
-
cfg_interval=cfg_interval,
|
281 |
-
timestep_shift=timestep_shift,
|
282 |
-
num_timesteps=num_timesteps,
|
283 |
-
cfg_renorm_min=cfg_renorm_min,
|
284 |
-
cfg_renorm_type=cfg_renorm_type,
|
285 |
-
)
|
286 |
-
yield img
|
287 |
-
|
288 |
-
def __call__(
|
289 |
-
self,
|
290 |
-
image: Optional[Image.Image] = None,
|
291 |
-
text: Optional[str] = None,
|
292 |
-
**kargs
|
293 |
-
) -> Any:
|
294 |
-
input_list = []
|
295 |
-
if image is not None:
|
296 |
-
input_list.append(image)
|
297 |
-
if text is not None:
|
298 |
-
input_list.append(text)
|
299 |
-
|
300 |
-
if not input_list and not kargs.get('force_empty_input', False): # allow forcing for special cases if needed
|
301 |
-
return
|
302 |
-
|
303 |
-
# Intelligent setting of 'understanding_output' if not provided by caller
|
304 |
-
# This helps app.py's simpler calls like inferencer(text=...) to correctly produce text.
|
305 |
-
if 'understanding_output' not in kargs:
|
306 |
-
if text is not None and image is None: # Primarily text input
|
307 |
-
kargs['understanding_output'] = True
|
308 |
-
elif image is not None and text is None: # Primarily image input, assume image-to-text (captioning/VQA)
|
309 |
-
kargs['understanding_output'] = True
|
310 |
-
# If both text and image, or neither, rely on caller or default (False for image gen)
|
311 |
-
|
312 |
-
yield from self.interleave_inference(input_list, **kargs)
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
from copy import deepcopy
|
5 |
+
from typing import List, Dict, Tuple, Optional, Union, Any
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
+
from transformers.configuration_utils import PretrainedConfig
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
|
16 |
+
from data.data_utils import pil_img2rgb
|
17 |
+
from modeling.bagel.qwen2_navit import NaiveCache
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer.
|
22 |
+
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''
|
23 |
+
|
24 |
+
GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
|
25 |
+
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
|
26 |
+
|
27 |
+
|
28 |
+
class InterleaveInferencer:
|
29 |
+
def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
|
30 |
+
self.model = model
|
31 |
+
self.vae_model = vae_model
|
32 |
+
self.tokenizer = tokenizer
|
33 |
+
self.vae_transform = vae_transform
|
34 |
+
self.vit_transform = vit_transform
|
35 |
+
self.new_token_ids = new_token_ids
|
36 |
+
|
37 |
+
def init_gen_context(self):
|
38 |
+
gen_context = {
|
39 |
+
'kv_lens': [0],
|
40 |
+
'ropes': [0],
|
41 |
+
'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
|
42 |
+
}
|
43 |
+
return gen_context
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def update_context_text(self, text, gen_context):
|
47 |
+
# used for interleave data, currently only support 1 data inference,
|
48 |
+
|
49 |
+
past_key_values = gen_context['past_key_values']
|
50 |
+
kv_lens = gen_context['kv_lens']
|
51 |
+
ropes = gen_context['ropes']
|
52 |
+
generation_input, kv_lens, ropes = self.model.prepare_prompts(
|
53 |
+
curr_kvlens=kv_lens,
|
54 |
+
curr_rope=ropes,
|
55 |
+
prompts=[text],
|
56 |
+
tokenizer=self.tokenizer,
|
57 |
+
new_token_ids=self.new_token_ids,
|
58 |
+
)
|
59 |
+
|
60 |
+
past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)
|
61 |
+
gen_context['kv_lens'] = kv_lens
|
62 |
+
gen_context['ropes'] = ropes
|
63 |
+
gen_context['past_key_values'] = past_key_values
|
64 |
+
|
65 |
+
return gen_context
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def update_context_image(self, image, gen_context, vae=True, vit=True):
|
69 |
+
# used for interleave data, currently only support 1 data inference,
|
70 |
+
|
71 |
+
assert vae or vit
|
72 |
+
past_key_values = gen_context['past_key_values']
|
73 |
+
kv_lens = gen_context['kv_lens']
|
74 |
+
ropes = gen_context['ropes']
|
75 |
+
|
76 |
+
if vae:
|
77 |
+
## update vae
|
78 |
+
generation_input, kv_lens, ropes = self.model.prepare_vae_images(
|
79 |
+
curr_kvlens=kv_lens,
|
80 |
+
curr_rope=ropes,
|
81 |
+
images=[image],
|
82 |
+
transforms=self.vae_transform,
|
83 |
+
new_token_ids=self.new_token_ids,
|
84 |
+
)
|
85 |
+
past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
|
86 |
+
|
87 |
+
if vit:
|
88 |
+
## update vit
|
89 |
+
generation_input, kv_lens, ropes = self.model.prepare_vit_images(
|
90 |
+
curr_kvlens=kv_lens,
|
91 |
+
curr_rope=ropes,
|
92 |
+
images=[image],
|
93 |
+
transforms=self.vit_transform,
|
94 |
+
new_token_ids=self.new_token_ids,
|
95 |
+
)
|
96 |
+
past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)
|
97 |
+
|
98 |
+
gen_context['kv_lens'] = kv_lens
|
99 |
+
gen_context['ropes'] = ropes
|
100 |
+
gen_context['past_key_values'] = past_key_values
|
101 |
+
|
102 |
+
return gen_context
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def gen_image(
|
106 |
+
self,
|
107 |
+
image_shape,
|
108 |
+
gen_context,
|
109 |
+
cfg_text_scale=4.0,
|
110 |
+
cfg_img_scale=1.5,
|
111 |
+
|
112 |
+
cfg_text_precontext=None,
|
113 |
+
cfg_img_precontext=None,
|
114 |
+
cfg_interval=(0.4, 1.0),
|
115 |
+
cfg_renorm_min=0.0,
|
116 |
+
cfg_renorm_type="global",
|
117 |
+
|
118 |
+
num_timesteps=50,
|
119 |
+
timestep_shift=3.0
|
120 |
+
):
|
121 |
+
# print(cfg_renorm_type)
|
122 |
+
past_key_values = gen_context['past_key_values']
|
123 |
+
kv_lens = gen_context['kv_lens']
|
124 |
+
ropes = gen_context['ropes']
|
125 |
+
generation_input = self.model.prepare_vae_latent(
|
126 |
+
curr_kvlens=kv_lens,
|
127 |
+
curr_rope=ropes,
|
128 |
+
image_sizes=[image_shape],
|
129 |
+
new_token_ids=self.new_token_ids,
|
130 |
+
)
|
131 |
+
|
132 |
+
# text cfg
|
133 |
+
cfg_text_past_key_values = cfg_text_precontext['past_key_values']
|
134 |
+
kv_lens_cfg = cfg_text_precontext['kv_lens']
|
135 |
+
ropes_cfg = cfg_text_precontext['ropes']
|
136 |
+
generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
|
137 |
+
curr_kvlens=kv_lens_cfg,
|
138 |
+
curr_rope=ropes_cfg,
|
139 |
+
image_sizes=[image_shape],
|
140 |
+
)
|
141 |
+
|
142 |
+
# img cfg
|
143 |
+
cfg_img_past_key_values = cfg_img_precontext['past_key_values']
|
144 |
+
kv_lens_cfg = cfg_img_precontext['kv_lens']
|
145 |
+
ropes_cfg = cfg_img_precontext['ropes']
|
146 |
+
generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
|
147 |
+
curr_kvlens=kv_lens_cfg,
|
148 |
+
curr_rope=ropes_cfg,
|
149 |
+
image_sizes=[image_shape],
|
150 |
+
)
|
151 |
+
|
152 |
+
unpacked_latent = self.model.generate_image(
|
153 |
+
past_key_values=past_key_values,
|
154 |
+
cfg_text_past_key_values=cfg_text_past_key_values,
|
155 |
+
cfg_img_past_key_values=cfg_img_past_key_values,
|
156 |
+
num_timesteps=num_timesteps,
|
157 |
+
cfg_text_scale=cfg_text_scale,
|
158 |
+
cfg_img_scale=cfg_img_scale,
|
159 |
+
cfg_interval=cfg_interval,
|
160 |
+
cfg_renorm_min=cfg_renorm_min,
|
161 |
+
cfg_renorm_type=cfg_renorm_type,
|
162 |
+
timestep_shift=timestep_shift,
|
163 |
+
**generation_input,
|
164 |
+
cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
|
165 |
+
cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
|
166 |
+
cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
|
167 |
+
cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
|
168 |
+
cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
|
169 |
+
cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
|
170 |
+
cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
|
171 |
+
cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
|
172 |
+
)
|
173 |
+
|
174 |
+
image = self.decode_image(unpacked_latent[0], image_shape)
|
175 |
+
return image
|
176 |
+
|
177 |
+
|
178 |
+
def decode_image(self, latent, image_shape):
|
179 |
+
H, W = image_shape
|
180 |
+
h, w = H // self.model.latent_downsample, W // self.model.latent_downsample
|
181 |
+
|
182 |
+
latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
|
183 |
+
latent = torch.einsum("nhwpqc->nchpwq", latent)
|
184 |
+
latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
|
185 |
+
image = self.vae_model.decode(latent)
|
186 |
+
image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
|
187 |
+
image = Image.fromarray((image).to(torch.uint8).cpu().numpy())
|
188 |
+
|
189 |
+
return image
|
190 |
+
|
191 |
+
@torch.no_grad()
|
192 |
+
def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
|
193 |
+
gen_context = deepcopy(gen_context)
|
194 |
+
past_key_values = gen_context['past_key_values']
|
195 |
+
kv_lens = gen_context['kv_lens']
|
196 |
+
ropes = gen_context['ropes']
|
197 |
+
|
198 |
+
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
199 |
+
for unpacked_latent in self.model.generate_text(
|
200 |
+
past_key_values=past_key_values,
|
201 |
+
max_length=max_length,
|
202 |
+
do_sample=do_sample,
|
203 |
+
temperature=temperature,
|
204 |
+
end_token_id=self.new_token_ids['eos_token_id'],
|
205 |
+
**generation_input,
|
206 |
+
):
|
207 |
+
output = self.tokenizer.decode(unpacked_latent)
|
208 |
+
# output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
|
209 |
+
yield output
|
210 |
+
|
211 |
+
@torch.no_grad()
|
212 |
+
def interleave_inference(
|
213 |
+
self,
|
214 |
+
input_lists: List[Union[str, Image.Image]],
|
215 |
+
think=False,
|
216 |
+
understanding_output=False,
|
217 |
+
max_think_token_n=1000,
|
218 |
+
do_sample=False, # for gen_text
|
219 |
+
temperature=0.3, # for gen_text
|
220 |
+
# gen_image kargs
|
221 |
+
cfg_text_scale=3.0,
|
222 |
+
cfg_img_scale=1.5,
|
223 |
+
cfg_interval=[0.4, 1.0],
|
224 |
+
timestep_shift=3.0,
|
225 |
+
num_timesteps=50,
|
226 |
+
cfg_renorm_min=0.0,
|
227 |
+
cfg_renorm_type="global",
|
228 |
+
image_shapes=(1024, 1024), # Default, can be overridden by actual input image
|
229 |
+
):
|
230 |
+
gen_context = self.init_gen_context()
|
231 |
+
cfg_text_context = self.init_gen_context()
|
232 |
+
cfg_img_context = self.init_gen_context()
|
233 |
+
|
234 |
+
current_image_shapes = image_shapes
|
235 |
+
|
236 |
+
# Use torch.cuda.amp.autocast if available, otherwise a simple context manager
|
237 |
+
# For simplicity, assuming it's handled externally or not strictly needed for this snippet
|
238 |
+
# with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
239 |
+
|
240 |
+
if think:
|
241 |
+
system_prompt = VLM_THINK_SYSTEM_PROMPT if understanding_output else GEN_THINK_SYSTEM_PROMPT
|
242 |
+
gen_context = self.update_context_text(system_prompt, gen_context)
|
243 |
+
cfg_text_context = self.update_context_text(system_prompt, cfg_text_context)
|
244 |
+
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
|
245 |
+
|
246 |
+
for input_term in input_lists:
|
247 |
+
if isinstance(input_term, str):
|
248 |
+
gen_context = self.update_context_text(input_term, gen_context)
|
249 |
+
cfg_text_context = self.update_context_text(input_term, cfg_text_context)
|
250 |
+
cfg_img_context = self.update_context_text(input_term, cfg_img_context)
|
251 |
+
elif isinstance(input_term, Image.Image):
|
252 |
+
current_image_shapes = input_term.size[::-1] # H, W
|
253 |
+
use_vae_for_input_image = not understanding_output
|
254 |
+
gen_context = self.update_context_image(input_term, gen_context, vae=use_vae_for_input_image, vit=True)
|
255 |
+
cfg_text_context = self.update_context_image(input_term, cfg_text_context, vae=use_vae_for_input_image, vit=True)
|
256 |
+
# cfg_img_context does not typically see input images
|
257 |
+
else:
|
258 |
+
raise ValueError(f"Unsupported input type: {type(input_term)}")
|
259 |
+
|
260 |
+
if understanding_output: # Generate text
|
261 |
+
yield from self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature)
|
262 |
+
else: # Generate image
|
263 |
+
if think:
|
264 |
+
thought_text_parts = []
|
265 |
+
for part in self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=temperature):
|
266 |
+
yield part # Stream the thought
|
267 |
+
thought_text_parts.append(part)
|
268 |
+
full_thought_text = "".join(thought_text_parts)
|
269 |
+
if full_thought_text: # Only update if thought was generated
|
270 |
+
gen_context = self.update_context_text(full_thought_text, gen_context)
|
271 |
+
cfg_text_context = self.update_context_text(full_thought_text, cfg_text_context)
|
272 |
+
|
273 |
+
img = self.gen_image(
|
274 |
+
image_shape=current_image_shapes,
|
275 |
+
gen_context=gen_context,
|
276 |
+
cfg_text_precontext=cfg_text_context,
|
277 |
+
cfg_img_precontext=cfg_img_context,
|
278 |
+
cfg_text_scale=cfg_text_scale,
|
279 |
+
cfg_img_scale=cfg_img_scale,
|
280 |
+
cfg_interval=cfg_interval,
|
281 |
+
timestep_shift=timestep_shift,
|
282 |
+
num_timesteps=num_timesteps,
|
283 |
+
cfg_renorm_min=cfg_renorm_min,
|
284 |
+
cfg_renorm_type=cfg_renorm_type,
|
285 |
+
)
|
286 |
+
yield img
|
287 |
+
|
288 |
+
def __call__(
|
289 |
+
self,
|
290 |
+
image: Optional[Image.Image] = None,
|
291 |
+
text: Optional[str] = None,
|
292 |
+
**kargs
|
293 |
+
) -> Any:
|
294 |
+
input_list = []
|
295 |
+
if image is not None:
|
296 |
+
input_list.append(image)
|
297 |
+
if text is not None:
|
298 |
+
input_list.append(text)
|
299 |
+
|
300 |
+
if not input_list and not kargs.get('force_empty_input', False): # allow forcing for special cases if needed
|
301 |
+
return
|
302 |
+
|
303 |
+
# Intelligent setting of 'understanding_output' if not provided by caller
|
304 |
+
# This helps app.py's simpler calls like inferencer(text=...) to correctly produce text.
|
305 |
+
if 'understanding_output' not in kargs:
|
306 |
+
if text is not None and image is None: # Primarily text input
|
307 |
+
kargs['understanding_output'] = True
|
308 |
+
elif image is not None and text is None: # Primarily image input, assume image-to-text (captioning/VQA)
|
309 |
+
kargs['understanding_output'] = True
|
310 |
+
# If both text and image, or neither, rely on caller or default (False for image gen)
|
311 |
+
|
312 |
+
yield from self.interleave_inference(input_list, **kargs)
|