# Copyright (c) 2023 Dhruba Ghosh # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. # SPDX-License-Identifier: MIT # # This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20. # # Original file was released under MIT, with the full license text # available at https://github.com/djghosh13/geneval/blob/main/LICENSE. # # This modified file is released under the same license. import argparse import os import numpy as np import pandas as pd parser = argparse.ArgumentParser() parser.add_argument("filename", type=str) args = parser.parse_args() # Load classnames with open(os.path.join(os.path.dirname(__file__), "object_names.txt")) as cls_file: classnames = [line.strip() for line in cls_file] cls_to_idx = {"_".join(cls.split()):idx for idx, cls in enumerate(classnames)} # Load results df = pd.read_json(args.filename, orient="records", lines=True) # Measure overall success print("Summary") print("=======") print(f"Total images: {len(df)}") print(f"Total prompts: {len(df.groupby('metadata'))}") print(f"% correct images: {df['correct'].mean():.2%}") print(f"% correct prompts: {df.groupby('metadata')['correct'].any().mean():.2%}") print() # By group task_scores = [] print("Task breakdown") print("==============") for tag, task_df in df.groupby('tag', sort=False): task_scores.append(task_df['correct'].mean()) print(f"{tag:<16} = {task_df['correct'].mean():.2%} ({task_df['correct'].sum()} / {len(task_df)})") print() print(f"Overall score (avg. over tasks): {np.mean(task_scores):.5f}") print("\n\n==============") output_info = "SO TO CT CL POS ATTR ALL\n" for score in task_scores: output_info += f"{score:.2f} " output_info += f"{np.mean(task_scores):.2f}" + "\n" print(output_info) with open(os.path.join(os.path.dirname(args.filename), "geneval_results.txt"), "w") as f: f.write(output_info)