# Copyright (c) 2024 The Qwen Team and The HuggingFace Inc. team. # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. # SPDX-License-Identifier: Apache-2.0 # # This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20. # # Original file was released under Apache-2.0, with the full license text # available at https://github.com/huggingface/transformers/blob/main/LICENSE. # # This modified file is released under the same license. from dataclasses import dataclass from functools import partial from typing import List, Optional, Tuple import torch from torch import nn from torch.nn.attention import SDPBackend, sdpa_kernel from torch.nn.attention.flex_attention import flex_attention from torch.nn.functional import scaled_dot_product_attention from transformers.utils import ModelOutput from flash_attn import flash_attn_varlen_func from modeling.qwen2.modeling_qwen2 import ( Qwen2Attention, Qwen2MLP, Qwen2PreTrainedModel, Qwen2RMSNorm, Qwen2RotaryEmbedding, apply_rotary_pos_emb, ) from modeling.qwen2.configuration_qwen2 import Qwen2Config as _Qwen2Config torch._dynamo.config.cache_size_limit = 512 torch._dynamo.config.accumulated_cache_size_limit = 4096 # flex_attention = torch.compile(flex_attention) # , dynamic=True, mode='max-autotune' flex_attention = torch.compile(flex_attention) class Qwen2Config(_Qwen2Config): r""" This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 151936): Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Qwen2Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 22016): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 32): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 32768): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE use_sliding_window (`bool`, *optional*, defaults to `False`): Whether to use sliding window attention. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention (SWA) window size. If not specified, will default to `4096`. max_window_layers (`int`, *optional*, defaults to 28): The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import Qwen2Model, Qwen2Config >>> # Initializing a Qwen2 style configuration >>> configuration = Qwen2Config() >>> # Initializing a model from the Qwen2-7B style configuration >>> model = Qwen2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qwen2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, is_causal=True, _attn_implementation="flash_attention_2", qk_norm=True, layer_module="Qwen2DecoderLayer", freeze_und=False, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, initializer_range=initializer_range, rms_norm_eps=rms_norm_eps, use_cache=use_cache, tie_word_embeddings=tie_word_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, use_sliding_window=use_sliding_window, sliding_window=sliding_window, max_window_layers=max_window_layers, attention_dropout=attention_dropout, is_causal=is_causal, _attn_implementation=_attn_implementation, **kwargs, ) self.qk_norm = qk_norm self.layer_module = layer_module self.freeze_und = freeze_und class NaiveCache: def __init__(self, num_layers): self.key_cache = {k: None for k in range(num_layers)} self.value_cache = {k: None for k in range(num_layers)} @property def num_layers(self): return len(self.key_cache) @property def seq_lens(self): if self.key_cache[0] is not None: return self.key_cache[0].shape[0] else: return 0 @dataclass class BaseNavitOutputWithPast(ModelOutput): packed_query_sequence: torch.FloatTensor = None past_key_values: Optional[NaiveCache] = None def pad_sequence(tensor, pad_size): H, L, D = tensor.shape pad_tensor = tensor.new_zeros((H, pad_size, D)) return torch.cat([tensor, pad_tensor], dim=1) class PackedAttention(Qwen2Attention): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) if self.config.qk_norm: self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask: List[torch.Tensor], packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor], ): packed_query_states = self.q_proj(packed_sequence).view(-1, self.num_heads, self.head_dim) packed_key_states = self.k_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_value_states = self.v_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_query_states = self.q_norm(packed_query_states) packed_key_states = self.k_norm(packed_key_states) packed_cos, packed_sin = packed_position_embeddings packed_query_states, packed_key_states = apply_rotary_pos_emb( packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1 ) if isinstance(attention_mask, List): packed_key_states = packed_key_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1) packed_key_states = packed_key_states.reshape(-1, self.num_heads, self.head_dim) packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1) packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim) unpacked_query_states = packed_query_states.transpose(0, 1).split(sample_lens, dim=1) unpacked_key_states = packed_key_states.transpose(0, 1).split(sample_lens, dim=1) unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1) upacked_attn_output = [] for query_states, key_states, value_states, attention_mask_per_sample in zip( unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask ): with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): attn_output = scaled_dot_product_attention( query_states.to(torch.bfloat16).unsqueeze(0), key_states.to(torch.bfloat16).unsqueeze(0), value_states.to(torch.bfloat16).unsqueeze(0), attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0), ) upacked_attn_output.append(attn_output.squeeze(0)) packed_attn_output = torch.cat(upacked_attn_output, dim=1) else: pad_size = sum(sample_lens) - packed_query_states.shape[0] packed_query_states = pad_sequence(packed_query_states.permute(1, 0, 2), pad_size) packed_key_states = pad_sequence(packed_key_states.permute(1, 0, 2), pad_size) packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size) packed_attn_output = flex_attention( packed_query_states.unsqueeze(0), packed_key_states.unsqueeze(0), packed_value_states.unsqueeze(0), enable_gqa=True, block_mask=attention_mask, ) end_index = packed_attn_output.shape[2] - pad_size packed_attn_output = packed_attn_output[0, :, :end_index, :] packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.hidden_size) packed_attn_output = self.o_proj(packed_attn_output) return packed_attn_output def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_embeddings: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, ): packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim) packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_query_states = self.q_norm(packed_query_states) packed_key_states = self.k_norm(packed_key_states) packed_cos, packed_sin = packed_query_position_embeddings packed_query_states, packed_key_states = apply_rotary_pos_emb( packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1 ) packed_query_states = packed_query_states.to(torch.bfloat16) packed_key_states = packed_key_states.to(torch.bfloat16) packed_value_states = packed_value_states.to(torch.bfloat16) if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None: past_key_states = past_key_values.key_cache[self.layer_idx] past_value_states = past_key_values.value_cache[self.layer_idx] seqlens = sum(query_lens) + sum(key_values_lens) merged_key_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim)) merged_value_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim)) merged_key_states[packed_query_indexes] = packed_key_states merged_key_states[packed_key_value_indexes] = past_key_states merged_value_states[packed_query_indexes] = packed_value_states merged_value_states[packed_key_value_indexes] = past_value_states key_values_lens = key_values_lens + query_lens else: merged_key_states = packed_key_states merged_value_states = packed_value_states key_values_lens = query_lens cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0)) cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0)) packed_attn_output = flash_attn_varlen_func( q=packed_query_states, k=merged_key_states, v=merged_value_states, cu_seqlens_q=cu_seqlens_q.to(torch.int32), cu_seqlens_k=cu_seqlens_k.to(torch.int32), max_seqlen_q=max(query_lens).item(), max_seqlen_k=max(key_values_lens).item(), causal=is_causal, ) packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size) packed_attn_output = self.o_proj(packed_attn_output) if update_past_key_values: past_key_values.key_cache[self.layer_idx] = merged_key_states past_key_values.value_cache[self.layer_idx] = merged_value_states return packed_attn_output, past_key_values class PackedAttentionMoT(Qwen2Attention): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) if self.config.qk_norm: self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.q_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() self.q_norm_moe_gen = nn.Identity() self.k_norm_moe_gen = nn.Identity() self.q_proj_moe_gen = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj_moe_gen = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor], packed_und_token_indexes: torch.LongTensor, packed_gen_token_indexes: torch.LongTensor, ): packed_query_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_heads * self.head_dim)) packed_key_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim)) packed_value_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim)) packed_sequence_und = packed_sequence[packed_und_token_indexes] packed_sequence_gen = packed_sequence[packed_gen_token_indexes] packed_query_states[packed_und_token_indexes] = self.q_proj(packed_sequence_und) packed_query_states[packed_gen_token_indexes] = self.q_proj_moe_gen(packed_sequence_gen) packed_key_states[packed_und_token_indexes] = self.k_proj(packed_sequence_und) packed_key_states[packed_gen_token_indexes] = self.k_proj_moe_gen(packed_sequence_gen) packed_value_states[packed_und_token_indexes] = self.v_proj(packed_sequence_und) packed_value_states[packed_gen_token_indexes] = self.v_proj_moe_gen(packed_sequence_gen) packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim) packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim) packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim) if self.config.freeze_und: packed_value_states[packed_und_token_indexes] = packed_value_states[packed_und_token_indexes].detach() packed_query_states_ = packed_query_states.new_zeros(packed_query_states.shape) packed_key_states_ = packed_key_states.new_zeros(packed_key_states.shape) packed_query_states_[packed_und_token_indexes] = self.q_norm(packed_query_states[packed_und_token_indexes]) if self.config.freeze_und: packed_query_states_[packed_und_token_indexes] = packed_query_states_[packed_und_token_indexes].detach() packed_query_states_[packed_gen_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_gen_token_indexes]) packed_key_states_[packed_und_token_indexes] = self.k_norm(packed_key_states[packed_und_token_indexes]) if self.config.freeze_und: packed_key_states_[packed_und_token_indexes] = packed_key_states_[packed_und_token_indexes].detach() packed_key_states_[packed_gen_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_gen_token_indexes]) packed_cos, packed_sin = packed_position_embeddings packed_query_states_, packed_key_states_ = apply_rotary_pos_emb( packed_query_states_, packed_key_states_, packed_cos, packed_sin, unsqueeze_dim=1 ) if isinstance(attention_mask, List): packed_key_states_ = packed_key_states_[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1) packed_key_states_ = packed_key_states_.reshape(-1, self.num_heads, self.head_dim) packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1) packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim) unpacked_query_states = packed_query_states_.transpose(0, 1).split(sample_lens, dim=1) unpacked_key_states = packed_key_states_.transpose(0, 1).split(sample_lens, dim=1) unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1) upacked_attn_output = [] for query_states, key_states, value_states, attention_mask_per_sample in zip( unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask ): with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): attn_output = scaled_dot_product_attention( query_states.to(torch.bfloat16).unsqueeze(0), key_states.to(torch.bfloat16).unsqueeze(0), value_states.to(torch.bfloat16).unsqueeze(0), attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0), ) upacked_attn_output.append(attn_output.squeeze(0)) packed_attn_output = torch.cat(upacked_attn_output, dim=1) else: pad_size = sum(sample_lens) - packed_query_states.shape[0] packed_query_states_ = pad_sequence(packed_query_states_.permute(1, 0, 2), pad_size) packed_key_states_ = pad_sequence(packed_key_states_.permute(1, 0, 2), pad_size) packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size) packed_attn_output = flex_attention( packed_query_states_.unsqueeze(0), # 1, num_head, L, head_dim packed_key_states_.unsqueeze(0), packed_value_states.unsqueeze(0), enable_gqa=True, block_mask=attention_mask, ) end_index = packed_attn_output.shape[2] - pad_size packed_attn_output = packed_attn_output[0, :, :end_index, :] packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.num_heads * self.head_dim) packed_attn_output_ = packed_attn_output.new_zeros(packed_attn_output.shape) packed_attn_output_[packed_und_token_indexes] = self.o_proj(packed_attn_output[packed_und_token_indexes]) packed_attn_output_[packed_gen_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_gen_token_indexes]) return packed_attn_output_ def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_embeddings: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, mode="und", packed_vae_token_indexes=None, packed_text_indexes=None, ): if mode == 'und': packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim) packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim) packed_query_states = self.q_norm(packed_query_states) packed_key_states = self.k_norm(packed_key_states) elif mode == 'gen': packed_query_sequence = packed_query_sequence.to(torch.bfloat16) packed_query_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_heads * self.head_dim)) packed_key_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim)) packed_value_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim)) packed_text_query_sequence = packed_query_sequence[packed_text_indexes] packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes] packed_query_states[packed_text_indexes] = self.q_proj(packed_text_query_sequence) packed_query_states[packed_vae_token_indexes] = self.q_proj_moe_gen(packed_vae_query_sequence) packed_key_states[packed_text_indexes] = self.k_proj(packed_text_query_sequence) packed_key_states[packed_vae_token_indexes] = self.k_proj_moe_gen(packed_vae_query_sequence) packed_value_states[packed_text_indexes] = self.v_proj(packed_text_query_sequence) packed_value_states[packed_vae_token_indexes] = self.v_proj_moe_gen(packed_vae_query_sequence) packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim) packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim) packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim) packed_query_states = packed_query_states.to(torch.float32) packed_query_states[packed_text_indexes] = self.q_norm(packed_query_states[packed_text_indexes]) packed_query_states[packed_vae_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_vae_token_indexes]) packed_key_states = packed_key_states.to(torch.float32) packed_key_states[packed_text_indexes] = self.k_norm(packed_key_states[packed_text_indexes]) packed_key_states[packed_vae_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_vae_token_indexes]) packed_cos, packed_sin = packed_query_position_embeddings packed_query_states, packed_key_states = apply_rotary_pos_emb( packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1 ) packed_query_states = packed_query_states.to(torch.bfloat16) packed_key_states = packed_key_states.to(torch.bfloat16) packed_value_states = packed_value_states.to(torch.bfloat16) if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None: past_key_states = past_key_values.key_cache[self.layer_idx] past_value_states = past_key_values.value_cache[self.layer_idx] seqlens = sum(query_lens) + sum(key_values_lens) merged_key_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim]) merged_value_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim]) merged_key_states[packed_query_indexes] = packed_key_states merged_key_states[packed_key_value_indexes] = past_key_states merged_value_states[packed_query_indexes] = packed_value_states merged_value_states[packed_key_value_indexes] = past_value_states key_values_lens = key_values_lens + query_lens else: merged_key_states = packed_key_states merged_value_states = packed_value_states key_values_lens = query_lens cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0)) cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0)) packed_attn_output = flash_attn_varlen_func( q=packed_query_states, k=merged_key_states, v=merged_value_states, cu_seqlens_q=cu_seqlens_q.to(torch.int32), cu_seqlens_k=cu_seqlens_k.to(torch.int32), max_seqlen_q=max(query_lens).item(), max_seqlen_k=max(key_values_lens).item(), causal=is_causal, ) packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size) if mode == 'und': packed_attn_output = self.o_proj(packed_attn_output) elif mode == 'gen': packed_attn_output[packed_text_indexes] = self.o_proj(packed_attn_output[packed_text_indexes]) packed_attn_output[packed_vae_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_vae_token_indexes]) if update_past_key_values: past_key_values.key_cache[self.layer_idx] = merged_key_states past_key_values.value_cache[self.layer_idx] = merged_value_states return packed_attn_output, past_key_values class Qwen2DecoderLayer(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__() self.hidden_size = config.hidden_size self.self_attn = PackedAttention(config, layer_idx) self.mlp = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor], ) -> torch.Tensor: residual = packed_sequence packed_sequence = self.input_layernorm(packed_sequence) # Self Attention packed_sequence = self.self_attn( packed_sequence=packed_sequence, sample_lens=sample_lens, attention_mask=attention_mask, packed_position_embeddings=packed_position_embeddings, ) packed_sequence = residual + packed_sequence # Fully Connected residual = packed_sequence packed_sequence = self.post_attention_layernorm(packed_sequence) packed_sequence = self.mlp(packed_sequence) packed_sequence = residual + packed_sequence return packed_sequence def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_embeddings: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, ) -> BaseNavitOutputWithPast: residual = packed_query_sequence packed_query_sequence = self.input_layernorm(packed_query_sequence) # Self Attention packed_query_sequence, past_key_values = self.self_attn( packed_query_sequence=packed_query_sequence, query_lens=query_lens, packed_query_position_embeddings=packed_query_position_embeddings, packed_query_indexes=packed_query_indexes, past_key_values=past_key_values, key_values_lens=key_values_lens, packed_key_value_indexes=packed_key_value_indexes, update_past_key_values=update_past_key_values, is_causal=is_causal, ) packed_query_sequence = residual + packed_query_sequence # Fully Connected residual = packed_query_sequence packed_query_sequence = self.post_attention_layernorm(packed_query_sequence) packed_query_sequence = self.mlp(packed_query_sequence) packed_query_sequence = residual + packed_query_sequence return packed_query_sequence, past_key_values class Qwen2MoTDecoderLayer(nn.Module): def __init__( self, config, layer_idx: Optional[int] = None, attn_module: Optional[Qwen2Attention] = PackedAttentionMoT, ): super().__init__() self.hidden_size = config.hidden_size self.freeze_und = config.freeze_und self.self_attn = attn_module(config, layer_idx) self.mlp = Qwen2MLP(config) self.mlp_moe_gen = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.input_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor], packed_und_token_indexes: torch.LongTensor, packed_gen_token_indexes: torch.LongTensor, ) -> torch.Tensor: residual = packed_sequence packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape) packed_sequence_[packed_und_token_indexes] = self.input_layernorm(packed_sequence[packed_und_token_indexes]) packed_sequence_[packed_gen_token_indexes] = self.input_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes]) # Self Attention packed_sequence_ = self.self_attn( packed_sequence=packed_sequence_, sample_lens=sample_lens, attention_mask=attention_mask, packed_position_embeddings=packed_position_embeddings, packed_und_token_indexes=packed_und_token_indexes, packed_gen_token_indexes=packed_gen_token_indexes, ) if self.freeze_und: packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach() packed_sequence = residual + packed_sequence_ # Fully Connected residual = packed_sequence packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape) packed_sequence_[packed_und_token_indexes] = self.mlp( self.post_attention_layernorm(packed_sequence[packed_und_token_indexes]) ) if self.freeze_und: packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach() packed_sequence_[packed_gen_token_indexes] = self.mlp_moe_gen( self.post_attention_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes]) ) packed_sequence = residual + packed_sequence_ return packed_sequence def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_embeddings: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, mode="und", packed_vae_token_indexes=None, packed_text_indexes=None, ) -> BaseNavitOutputWithPast: residual = packed_query_sequence if mode == "und": packed_query_sequence = self.input_layernorm(packed_query_sequence) elif mode == "gen": packed_query_sequence_ = torch.zeros_like(packed_query_sequence) packed_query_sequence_[packed_text_indexes] = self.input_layernorm(packed_query_sequence[packed_text_indexes]) packed_query_sequence_[packed_vae_token_indexes] = self.input_layernorm_moe_gen(packed_query_sequence[packed_vae_token_indexes]) packed_query_sequence = packed_query_sequence_ # Self Attention packed_query_sequence, past_key_values = self.self_attn( packed_query_sequence=packed_query_sequence, query_lens=query_lens, packed_query_position_embeddings=packed_query_position_embeddings, packed_query_indexes=packed_query_indexes, past_key_values=past_key_values, key_values_lens=key_values_lens, packed_key_value_indexes=packed_key_value_indexes, update_past_key_values=update_past_key_values, is_causal=is_causal, mode=mode, packed_vae_token_indexes=packed_vae_token_indexes, packed_text_indexes=packed_text_indexes, ) packed_query_sequence = residual + packed_query_sequence # Fully Connected residual = packed_query_sequence if mode == "und": packed_query_sequence = self.post_attention_layernorm(packed_query_sequence) packed_query_sequence = self.mlp(packed_query_sequence) elif mode == "gen": packed_text_query_sequence = packed_query_sequence[packed_text_indexes] packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes] packed_text_query_sequence = self.post_attention_layernorm(packed_text_query_sequence).to(torch.bfloat16) packed_vae_query_sequence = self.post_attention_layernorm_moe_gen(packed_vae_query_sequence).to(torch.bfloat16) packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16) packed_query_sequence_[packed_text_indexes] = self.mlp(packed_text_query_sequence) packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_vae_query_sequence) packed_query_sequence = packed_query_sequence_ packed_query_sequence = residual + packed_query_sequence return packed_query_sequence, past_key_values class Qwen2MoEDecoderLayer(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__() self.hidden_size = config.hidden_size self.self_attn = PackedAttention(config, layer_idx) self.mlp = Qwen2MLP(config) self.mlp_moe_gen = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor], packed_und_token_indexes: torch.LongTensor, packed_gen_token_indexes: torch.LongTensor, ) -> torch.Tensor: residual = packed_sequence packed_sequence = self.input_layernorm(packed_sequence) # Self Attention packed_sequence = self.self_attn( packed_sequence=packed_sequence, sample_lens=sample_lens, attention_mask=attention_mask, packed_position_embeddings=packed_position_embeddings, ) packed_sequence = residual + packed_sequence # Fully Connected residual = packed_sequence packed_sequence = self.post_attention_layernorm(packed_sequence) packed_sequence_new = packed_sequence.new_zeros(packed_sequence.shape) packed_sequence_und = self.mlp(packed_sequence[packed_und_token_indexes]) packed_sequence_gen = self.mlp_moe_gen(packed_sequence[packed_gen_token_indexes]) packed_sequence_new[packed_und_token_indexes] = packed_sequence_und packed_sequence_new[packed_gen_token_indexes] = packed_sequence_gen packed_sequence = residual + packed_sequence_new return packed_sequence def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_embeddings: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, mode="und", packed_vae_token_indexes=None, packed_text_indexes=None, ) -> BaseNavitOutputWithPast: residual = packed_query_sequence packed_query_sequence = self.input_layernorm(packed_query_sequence) # Self Attention packed_query_sequence, past_key_values = self.self_attn( packed_query_sequence=packed_query_sequence, query_lens=query_lens, packed_query_position_embeddings=packed_query_position_embeddings, packed_query_indexes=packed_query_indexes, past_key_values=past_key_values, key_values_lens=key_values_lens, packed_key_value_indexes=packed_key_value_indexes, update_past_key_values=update_past_key_values, is_causal=is_causal, ) packed_query_sequence = residual + packed_query_sequence # Fully Connected residual = packed_query_sequence packed_query_sequence = self.post_attention_layernorm(packed_query_sequence) if mode == "und": packed_query_sequence = self.mlp(packed_query_sequence) elif mode == "gen": packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16) packed_query_sequence_[packed_text_indexes] = self.mlp(packed_query_sequence[packed_text_indexes]) packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_query_sequence[packed_vae_token_indexes]) packed_query_sequence = packed_query_sequence_ packed_query_sequence = residual + packed_query_sequence return packed_query_sequence, past_key_values Decoder_layer_dict = { "Qwen2DecoderLayer": Qwen2DecoderLayer, "Qwen2MoEDecoderLayer": Qwen2MoEDecoderLayer, "Qwen2MoTDecoderLayer": partial(Qwen2MoTDecoderLayer, attn_module=PackedAttentionMoT), } class Qwen2Model(Qwen2PreTrainedModel): def __init__(self, config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.use_moe = 'Mo' in config.layer_module self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) layer_module = Decoder_layer_dict[config.layer_module] self.layers = nn.ModuleList( [layer_module(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if self.use_moe: self.norm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Qwen2RotaryEmbedding(config=config) # Initialize weights and apply final processing self.post_init() def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_ids: torch.Tensor, packed_und_token_indexes: Optional[torch.LongTensor] = None, packed_gen_token_indexes: Optional[torch.LongTensor] = None, ) -> torch.Tensor: if self.config.freeze_und: packed_sequence[packed_und_token_indexes] = packed_sequence[packed_und_token_indexes].detach() # create position embeddings to be shared across the decoder layers cos, sin = self.rotary_emb(packed_sequence, packed_position_ids.unsqueeze(0)) cos = cos.squeeze(0) sin = sin.squeeze(0) packed_position_embeddings = (cos, sin) extra_inputs = {} if self.use_moe: assert packed_und_token_indexes is not None if packed_gen_token_indexes is None: packed_gen_token_indexes = packed_und_token_indexes.new_ones(size=[0]) extra_inputs.update( packed_und_token_indexes=packed_und_token_indexes, packed_gen_token_indexes=packed_gen_token_indexes, ) for decoder_layer in self.layers: packed_sequence = decoder_layer( packed_sequence=packed_sequence, sample_lens=sample_lens, attention_mask=attention_mask, packed_position_embeddings=packed_position_embeddings, **extra_inputs ) if self.use_moe: packed_sequence_ = torch.zeros_like(packed_sequence) packed_sequence_[packed_und_token_indexes] = self.norm(packed_sequence[packed_und_token_indexes]) if self.config.freeze_und: packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach() packed_sequence_[packed_gen_token_indexes] = self.norm_moe_gen(packed_sequence[packed_gen_token_indexes]) return packed_sequence_ else: return self.norm(packed_sequence) def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_ids: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, mode="und", packed_vae_token_indexes=None, packed_text_indexes=None, ) -> BaseNavitOutputWithPast: # create position embeddings to be shared across the decoder layers cos, sin = self.rotary_emb(packed_query_sequence, packed_query_position_ids.unsqueeze(0)) cos = cos.squeeze(0) sin = sin.squeeze(0) packed_query_position_embeddings = (cos, sin) extra_inputs = {} if self.use_moe: extra_inputs.update(mode=mode) if mode == 'gen': assert packed_vae_token_indexes is not None assert packed_text_indexes is not None extra_inputs.update( packed_vae_token_indexes=packed_vae_token_indexes, packed_text_indexes=packed_text_indexes, ) for decoder_layer in self.layers: packed_query_sequence, past_key_values = decoder_layer( packed_query_sequence=packed_query_sequence, query_lens=query_lens, packed_query_position_embeddings=packed_query_position_embeddings, packed_query_indexes=packed_query_indexes, past_key_values=past_key_values, key_values_lens=key_values_lens, packed_key_value_indexes=packed_key_value_indexes, update_past_key_values=update_past_key_values, is_causal=is_causal, **extra_inputs, ) if self.use_moe: if mode == "und": packed_query_sequence = self.norm(packed_query_sequence) elif mode == "gen": packed_query_sequence_ = torch.zeros_like(packed_query_sequence) packed_query_sequence_[packed_text_indexes] = self.norm(packed_query_sequence[packed_text_indexes]) packed_query_sequence_[packed_vae_token_indexes] = self.norm_moe_gen(packed_query_sequence[packed_vae_token_indexes]) packed_query_sequence = packed_query_sequence_ else: packed_query_sequence = self.norm(packed_query_sequence) return BaseNavitOutputWithPast( packed_query_sequence=packed_query_sequence, past_key_values=past_key_values, ) class Qwen2ForCausalLM(Qwen2PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = Qwen2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def init_moe(self): for name, param in self.named_parameters(): if "moe_gen" in name: original_name = name.replace("_moe_gen", "") param.data.copy_(self.state_dict()[original_name].data) def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_inference(*args, **kwargs) def forward_train( self, packed_sequence: torch.Tensor, sample_lens: List[int], attention_mask, packed_position_ids: torch.Tensor, packed_und_token_indexes: Optional[torch.LongTensor] = None, packed_gen_token_indexes: Optional[torch.LongTensor] = None, ) -> torch.Tensor: outputs = self.model( packed_sequence=packed_sequence, sample_lens=sample_lens, packed_position_ids=packed_position_ids, attention_mask=attention_mask, packed_und_token_indexes=packed_und_token_indexes, packed_gen_token_indexes=packed_gen_token_indexes, ) return outputs def forward_inference( self, packed_query_sequence: torch.Tensor, query_lens: torch.Tensor, packed_query_position_ids: torch.Tensor, packed_query_indexes: torch.Tensor, past_key_values: Optional[NaiveCache] = None, key_values_lens: Optional[torch.Tensor] = None, packed_key_value_indexes: Optional[torch.Tensor] = None, update_past_key_values=True, is_causal=True, mode="und", packed_vae_token_indexes=None, packed_text_indexes=None, ) -> BaseNavitOutputWithPast: outputs = self.model( packed_query_sequence=packed_query_sequence, query_lens=query_lens, packed_query_position_ids=packed_query_position_ids, packed_query_indexes=packed_query_indexes, past_key_values=past_key_values, key_values_lens=key_values_lens, packed_key_value_indexes=packed_key_value_indexes, update_past_key_values=update_past_key_values, is_causal=is_causal, mode=mode, packed_vae_token_indexes=packed_vae_token_indexes, packed_text_indexes=packed_text_indexes, ) return outputs