# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import os
import json
import argparse
from safetensors.torch import load_file
import torch
import torch.distributed as dist
from data.data_utils import add_special_tokens
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from modeling.autoencoder import load_ae
import copy
from PIL import Image
from modeling.bagel.qwen2_navit import NaiveCache
def setup_distributed():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
The planning process is enclosed within tags, i.e. planning process here image here'''
def move_generation_input_to_device(generation_input, device):
# Utility to move all tensors in generation_input to device
for k, v in generation_input.items():
if isinstance(v, torch.Tensor):
generation_input[k] = v.to(device)
return generation_input
def generate_image_with_think(
prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=4.0, resolution=1024,
max_length=2048, simple_think=False, device=None
):
h, w = resolution, resolution
past_key_values = NaiveCache(model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
# system prompt
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[SYSTEM_PROMPT],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## cfg
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
########## cfg
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## think
tmp_past_key_values = copy.deepcopy(past_key_values)
tmp_newlens = copy.deepcopy(newlens)
tmp_new_rope = copy.deepcopy(new_rope)
tmp_generation_input, tmp_newlens, tmp_new_rope = model.prepare_prompts(
curr_kvlens=tmp_newlens,
curr_rope=tmp_new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
tmp_past_key_values = model.forward_cache_update_text(tmp_past_key_values, **tmp_generation_input)
tmp_generation_input = model.prepare_start_tokens(tmp_newlens, tmp_new_rope, new_token_ids)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_text(
past_key_values=tmp_past_key_values,
max_length=max_length,
do_sample=True,
temperature=0.3,
end_token_id=new_token_ids['eos_token_id'],
**tmp_generation_input,
)
output = tokenizer.decode(unpacked_latent[:,0])
think_output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
print("="*30, "original think", "="*30)
print(think_output)
if simple_think:
think_output_list = think_output.split("")
if think_output_list[1] != "":
think_output = think_output_list[1].strip()
print("="*30, "processed think", "="*30)
print(think_output)
########## think
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[think_output],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
########## generate image
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
timestep_shift=timestep_shift,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type="global",
cfg_text_past_key_values=None,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent0 = unpacked_latent[0]
latent0 = latent0.reshape(1, h//16, w//16, 2, 2, 16)
latent0 = torch.einsum("nhwpqc->nchpwq", latent0)
latent0 = latent0.reshape(1, 16, h//8, w//8)
image = vae_model.decode(latent0.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage, think_output
def generate_image(prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, resolution=1024, device=None):
past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
generation_input, newlens, new_rope = gen_model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16):
past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = gen_model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(resolution, resolution)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
cfg_newlens = [0]
cfg_new_rope = [0]
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=cfg_newlens,
curr_rope=cfg_new_rope,
image_sizes=[(resolution, resolution)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = gen_model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
cfg_text_past_key_values=cfg_past_key_values,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent = unpacked_latent[0]
latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, 16, resolution//8, resolution//8)
image = vae_model.decode(latent.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate images using Bagel model.")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.")
parser.add_argument("--metadata_file", type=str, required=True, help="JSON file containing lines of metadata for each prompt.")
parser.add_argument("--cfg_scale", type=float, default=4)
parser.add_argument("--resolution", type=int, default=1024)
parser.add_argument("--max_latent_size", type=int, default=64)
parser.add_argument("--think", action="store_true")
parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/')
args = parser.parse_args()
seed = 42
if seed is not None:
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
if rank == 0:
print(f"Output images are saved in {output_dir}")
llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1
vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=args.max_latent_size,
)
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
model_state_dict_path = os.path.join(args.model_path, "ema.safetensors")
model_state_dict = load_file(model_state_dict_path, device="cpu")
msg = model.load_state_dict(model_state_dict, strict=False)
if rank == 0:
print(msg)
del model_state_dict
model = model.to(device).eval()
vae_model = vae_model.to(device).eval()
gen_model = model
cfg_scale = args.cfg_scale
cfg_interval = [0.4, 1.0]
timestep_shift = 3.0
num_timesteps = 50
cfg_renorm_min = 0.0
with open(args.metadata_file, "r") as f:
metadatas = json.load(f)
total_metadatas = len(metadatas)
prompts_per_gpu = (total_metadatas + world_size - 1) // world_size
start = rank * prompts_per_gpu
end = min(start + prompts_per_gpu, total_metadatas)
print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})")
for idx in range(start, end):
metadata = metadatas[idx]
prompt = metadata['Prompt']
prompt_id = metadata['prompt_id']
outpath = os.path.join(output_dir, f"{prompt_id}.png")
print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'")
if os.path.exists(outpath):
print(f"GPU {rank} skipping generation for prompt: {prompt}")
continue
if args.think:
tmpimage, think_output = generate_image_with_think(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
max_length=2048,
simple_think=False,
device=device,
)
with open(outpath.replace(".png", ".txt"), "w") as f:
f.write(think_output)
else:
tmpimage = generate_image(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
device=device,
)
tmpimage = tmpimage.crop(tmpimage.getbbox())
tmpimage.save(outpath)
print(f"GPU {rank} has completed all tasks")
dist.barrier()