# Copyright 2025 Bytedance Ltd. and/or its affiliates. # SPDX-License-Identifier: Apache-2.0 import io import json import pyarrow.parquet as pq import random from PIL import Image from .data_utils import pil_img2rgb from .distributed_iterable_dataset import DistributedIterableDataset from .parquet_utils import get_parquet_data_paths, init_arrow_pf_fs Image.MAX_IMAGE_PIXELS = 20_000_000 class T2IIterableDataset(DistributedIterableDataset): def __init__( self, dataset_name, transform, tokenizer, data_dir_list, num_used_data, local_rank=0, world_size=1, num_workers=8, data_status=None, ): """ data_dir_list: list of data directories contains parquet files num_used_data: list of number of sampled data paths for each data directory """ super().__init__(dataset_name, local_rank, world_size, num_workers) self.transform = transform self.tokenizer = tokenizer self.data_status = data_status self.data_paths = self.get_data_paths(data_dir_list, num_used_data) self.set_epoch() def get_data_paths(self, data_dir_list, num_used_data): return get_parquet_data_paths(data_dir_list, num_used_data) def __iter__(self): data_paths_per_worker, worker_id = self.get_data_paths_per_worker() if self.data_status is not None: parquet_start_id = self.data_status[worker_id][0] row_group_start_id = self.data_status[worker_id][1] row_start_id = self.data_status[worker_id][2] + 1 else: parquet_start_id = 0 row_group_start_id = 0 row_start_id = 0 transform_stride = self.transform.stride print( f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: " f"resuming data at parquet#{parquet_start_id}, rg#{row_group_start_id}, row#{row_start_id}" ) while True: data_paths_per_worker_ = data_paths_per_worker[parquet_start_id:] for parquet_idx, parquet_file_path in enumerate(data_paths_per_worker_, start=parquet_start_id): fs = init_arrow_pf_fs(parquet_file_path) with fs.open_input_file(parquet_file_path) as f: fr = pq.ParquetFile(f) row_group_ids = list(range(fr.num_row_groups)) row_group_ids_ = row_group_ids[row_group_start_id:] for row_group_id in row_group_ids_: df = fr.read_row_group(row_group_id).to_pandas() df = df.iloc[row_start_id:] for row_idx, row in df.iterrows(): num_tokens = 0 try: image_byte = row['image'] image = pil_img2rgb(Image.open(io.BytesIO(image_byte))) except Exception as e: print(f'Error: {e} in rg#{row_group_id}, {parquet_file_path}') continue image_tensor = self.transform(image) height, width = image_tensor.shape[1:] num_tokens += width * height // transform_stride ** 2 try: caption_dict = row['captions'] caption_dict = json.loads(caption_dict) except Exception as e: print(f'Error: {e} in rg#{row_group_id}, {parquet_file_path}') continue caps_token = [self.tokenizer.encode(v) for _, v in caption_dict.items()] if len(caps_token) == 0: print(f'no caption in rg#{row_group_id}, {parquet_file_path}') caption_token = self.tokenizer.encode(' ') else: caption_token = random.choice(caps_token) sequence_plan, text_ids_list = [], [] text_ids = caption_token num_tokens += len(caption_token) text_ids_list.append(text_ids) sequence_plan.append({ 'type': 'text', 'enable_cfg': 1, 'loss': 0, 'special_token_loss': 0, 'special_token_label': None, }) sequence_plan.append({ 'type': 'vae_image', 'enable_cfg': 0, 'loss': 1, 'special_token_loss': 0, 'special_token_label': None, }) sample = dict( image_tensor_list=[image_tensor], text_ids_list=text_ids_list, num_tokens=num_tokens, sequence_plan=sequence_plan, data_indexes={ "data_indexes": [parquet_idx, row_group_id, row_idx], "worker_id": worker_id, "dataset_name": self.dataset_name, } ) yield sample row_start_id = 0 row_group_start_id = 0 parquet_start_id = 0 print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}")