# Copyright (c) 2022 Facebook, Inc. and its affiliates. # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. # SPDX-License-Identifier: CC BY-NC 4.0 # # This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20. # # Original file was released under CC BY-NC 4.0, with the full license text # available at https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt. # # This modified file is released under the same license. import math import numpy as np import torch from torch import nn from transformers.activations import ACT2FN # -------------------------------------------------------- # 2D sine-cosine position embedding # References: # DiT: https://github.com/facebookresearch/DiT/blob/main/models.py # -------------------------------------------------------- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb # -------------------------------------------------------- # TimestepEmbedder # Reference: # DiT: https://github.com/facebookresearch/DiT/blob/main/models.py # -------------------------------------------------------- class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class MLPconnector(nn.Module): def __init__(self, in_dim: int, out_dim: int, hidden_act: str): super().__init__() self.activation_fn = ACT2FN[hidden_act] self.fc1 = nn.Linear(in_dim, out_dim) self.fc2 = nn.Linear(out_dim, out_dim) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class PositionEmbedding(nn.Module): def __init__(self, max_num_patch_per_side, hidden_size): super().__init__() self.max_num_patch_per_side = max_num_patch_per_side self.hidden_size = hidden_size self.pos_embed = nn.Parameter( torch.zeros(max_num_patch_per_side ** 2, hidden_size), requires_grad=False ) self._init_weights() def _init_weights(self): # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed(self.hidden_size, self.max_num_patch_per_side) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float()) def forward(self, position_ids): return self.pos_embed[position_ids]