Spaces:
Running
Running
import os | |
import gradio as gr | |
from PIL import Image | |
import pytesseract | |
from pdf2image import convert_from_path | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain.memory import ConversationBufferMemory | |
from langchain_groq import ChatGroq | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import base64 | |
from io import BytesIO | |
# Set up Groq API Key and LLM | |
os.environ["GROQ_API_KEY"] = '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' | |
llm = ChatGroq( | |
model='llama3-70b-8192', | |
temperature=0.5, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2 | |
) | |
# OCR Functions | |
def ocr_image(image_path, language='eng+guj'): | |
img = Image.open(image_path) | |
text = pytesseract.image_to_string(img, lang=language) | |
return text | |
def ocr_pdf(pdf_path, language='eng+guj'): | |
images = convert_from_path(pdf_path) | |
all_text = "" | |
for img in images: | |
text = pytesseract.image_to_string(img, lang=language) | |
all_text += text + "\n" | |
return all_text | |
def ocr_file(file_path): | |
file_extension = os.path.splitext(file_path)[1].lower() | |
if file_extension == ".pdf": | |
text_re = ocr_pdf(file_path, language='guj+eng') | |
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]: | |
text_re = ocr_image(file_path, language='guj+eng') | |
else: | |
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.") | |
return text_re | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device': 'cpu'}, | |
encode_kwargs={'normalize_embeddings': True} | |
) | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
os.makedirs("faiss_index", exist_ok=True) | |
vector_store.save_local("faiss_index") | |
return vector_store | |
def process_ocr_and_pdf_files(file_paths): | |
raw_text = "" | |
for file_path in file_paths: | |
raw_text += ocr_file(file_path) + "\n" | |
text_chunks = get_text_chunks(raw_text) | |
return get_vector_store(text_chunks) | |
def get_conversational_chain(): | |
template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information. | |
Core Responsibilities: | |
1. Language Processing: | |
- Identify the language of the user's query (English or Gujarati) | |
- Respond in the same language as the query | |
- If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology | |
- For technical terms, provide both English and Gujarati versions when relevant | |
2. Document Understanding: | |
- Analyze the OCR-processed text from the uploaded files | |
- Account for potential OCR errors or misinterpretations | |
- Focus on extracting accurate information despite possible OCR imperfections | |
3. Response Guidelines: | |
- Provide direct, clear answers based solely on the document content | |
- If information is unclear due to OCR quality, mention this limitation | |
- For numerical data (dates, percentages, marks), double-check accuracy before responding | |
- If information is not found in the documents, clearly state: "This information is not present in the uploaded documents" | |
4. Educational Context: | |
- Maintain focus on educational queries related to the document content | |
- For admission-related queries, emphasize important deadlines and requirements | |
- For scholarship information, highlight eligibility criteria and application processes | |
- For course-related queries, provide detailed, accurate information from the documents | |
5. Response Format: | |
- Structure responses clearly with relevant subpoints when necessary | |
- For complex information, break down the answer into digestible parts | |
- Include relevant reference points from the documents when applicable | |
- Format numerical data and dates clearly | |
6. Quality Control: | |
- Verify that responses align with the document content | |
- Don't make assumptions beyond the provided information | |
- If multiple interpretations are possible due to OCR quality, mention all possibilities | |
- Maintain consistency in terminology throughout the conversation | |
Important Rules: | |
- Never make up information not present in the documents | |
- Don't combine information from previous conversations or external knowledge | |
- Always indicate if certain parts of the documents are unclear due to OCR quality | |
- Maintain professional tone while being accessible to students and parents | |
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources | |
Context from uploaded documents: | |
{context} | |
Chat History: | |
{history} | |
Current Question: {question} | |
Assistant: Let me provide a clear and accurate response based on the uploaded documents... | |
""" | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", | |
model_kwargs={'device': 'cpu'}, | |
encode_kwargs={'normalize_embeddings': True} | |
) | |
new_vector_store = FAISS.load_local( | |
"faiss_index", embeddings, allow_dangerous_deserialization=True | |
) | |
QA_CHAIN_PROMPT = PromptTemplate( | |
input_variables=["history", "context", "question"], | |
template=template | |
) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm, | |
retriever=new_vector_store.as_retriever(), | |
chain_type='stuff', | |
verbose=True, | |
chain_type_kwargs={ | |
"verbose": True, | |
"prompt": QA_CHAIN_PROMPT, | |
"memory": ConversationBufferMemory(memory_key="history", input_key="question"), | |
} | |
) | |
return qa_chain | |
def process_files_and_query(files, query): | |
if len(files) > 5: | |
return "Error: You can upload a maximum of 5 files only." | |
# Ensure temp directory exists | |
os.makedirs("temp", exist_ok=True) | |
# Save uploaded files | |
file_paths = [] | |
for file in files: | |
file_path = os.path.join("temp", os.path.basename(file)) | |
with open(file_path, "wb") as f: | |
f.write(open(file, 'rb').read()) | |
file_paths.append(file_path) | |
# Process files and create vector store | |
process_ocr_and_pdf_files(file_paths) | |
# Perform query | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device': 'cpu'}, | |
encode_kwargs={'normalize_embeddings': True} | |
) | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(query) | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "query": query}, return_only_outputs=True) | |
result = response.get("result", "No result found") | |
return result | |
def handle_uploaded_file(uploaded_files, show_in_sidebar=False): | |
sidebar_content = "" | |
if len(uploaded_files) > 5: | |
return "Error: You can upload a maximum of 5 files only." | |
# If the uploaded_files is a list, process each file | |
for uploaded_file in uploaded_files: | |
# Determine the file extension | |
file_extension = os.path.splitext(uploaded_file.name)[1].lower() | |
file_path = os.path.join("temp", uploaded_file.name) | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
# Check if the uploaded file is in 'NamedString' format (Gradio sometimes returns it this way) | |
if isinstance(uploaded_file, gr.File): | |
# In this case, read the file directly from the 'data' attribute | |
file_data = uploaded_file.read() # This is the file content in bytes | |
# Save the file content to a local file | |
with open(file_path, "wb") as f: | |
f.write(file_data) | |
if file_extension == ".pdf": | |
# Read and encode the PDF as base64 to embed in the sidebar | |
with open(file_path, "rb") as pdf_file: | |
pdf_data = pdf_file.read() | |
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8') | |
sidebar_content += f'<iframe src="data:application/pdf;base64,{pdf_base64}" width="500" height="500"></iframe>' | |
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: | |
# Display image in the sidebar | |
img = Image.open(file_path) | |
img_byte_array = BytesIO() | |
img.save(img_byte_array, format="PNG") | |
img_byte_array.seek(0) | |
sidebar_content += f'<img src="data:image/png;base64,{base64.b64encode(img_byte_array.getvalue()).decode()}" width="400" height="400"/>' | |
else: | |
# For text files, show the file content | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
sidebar_content += f"<pre>{content}</pre>" | |
return sidebar_content | |
# Gradio interface setup | |
def upload_and_display(files): | |
if len(files) > 5: | |
return "Error: You can upload a maximum of 5 files only." | |
sidebar_content = handle_uploaded_file(files, show_in_sidebar=True) | |
return sidebar_content | |
def launch_gradio_app(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Document OCR and Q&A Assistant") | |
with gr.Row(): | |
with gr.Column(scale=1): # Main content area (adjusted scale to an integer) | |
file_input = gr.File( | |
file_count="multiple", | |
type="filepath", # Changed from 'filepath' to 'file' | |
file_types=[".pdf", ".jpg", ".jpeg", ".png", ".bmp"], | |
label="Upload Documents (PDF/Images)" | |
) | |
query_input = gr.Textbox( | |
label="Ask a Question about the Documents", | |
lines=3 | |
) | |
submit_btn = gr.Button("Process and Query") | |
output = gr.Textbox(label="Answer", lines=5) | |
submit_btn.click( | |
fn=process_files_and_query, | |
inputs=[file_input, query_input], | |
outputs=[output] | |
) | |
with gr.Column(scale=1): # Sidebar (adjusted scale to an integer) | |
gr.Markdown("## Sidebar") | |
file_preview = gr.HTML(label="File Preview") # Display the preview content here | |
file_input.change(fn=upload_and_display, inputs=file_input, outputs=file_preview) | |
return demo | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
app = launch_gradio_app() | |
app.launch(share=True) # Set share=True to create a public link | |
# # Launch the Gradio app | |
# if __name__ == "__main__": | |
# app = launch_gradio_app() | |
# # app.launch() | |
# app.launch(share=True) | |
# demo.launch() |