import os import gradio as gr from PIL import Image import pytesseract from pdf2image import convert_from_path from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.memory import ConversationBufferMemory from langchain_groq import ChatGroq from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter import base64 from io import BytesIO # Set up Groq API Key and LLM os.environ["GROQ_API_KEY"] = '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' llm = ChatGroq( model='llama3-70b-8192', temperature=0.5, max_tokens=None, timeout=None, max_retries=2 ) # OCR Functions def ocr_image(image_path, language='eng+guj'): img = Image.open(image_path) text = pytesseract.image_to_string(img, lang=language) return text def ocr_pdf(pdf_path, language='eng+guj'): images = convert_from_path(pdf_path) all_text = "" for img in images: text = pytesseract.image_to_string(img, lang=language) all_text += text + "\n" return all_text def ocr_file(file_path): file_extension = os.path.splitext(file_path)[1].lower() if file_extension == ".pdf": text_re = ocr_pdf(file_path, language='guj+eng') elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]: text_re = ocr_image(file_path, language='guj+eng') else: raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.") return text_re def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) os.makedirs("faiss_index", exist_ok=True) vector_store.save_local("faiss_index") return vector_store def process_ocr_and_pdf_files(file_paths): raw_text = "" for file_path in file_paths: raw_text += ocr_file(file_path) + "\n" text_chunks = get_text_chunks(raw_text) return get_vector_store(text_chunks) def get_conversational_chain(): template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information. Core Responsibilities: 1. Language Processing: - Identify the language of the user's query (English or Gujarati) - Respond in the same language as the query - If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology - For technical terms, provide both English and Gujarati versions when relevant 2. Document Understanding: - Analyze the OCR-processed text from the uploaded files - Account for potential OCR errors or misinterpretations - Focus on extracting accurate information despite possible OCR imperfections 3. Response Guidelines: - Provide direct, clear answers based solely on the document content - If information is unclear due to OCR quality, mention this limitation - For numerical data (dates, percentages, marks), double-check accuracy before responding - If information is not found in the documents, clearly state: "This information is not present in the uploaded documents" 4. Educational Context: - Maintain focus on educational queries related to the document content - For admission-related queries, emphasize important deadlines and requirements - For scholarship information, highlight eligibility criteria and application processes - For course-related queries, provide detailed, accurate information from the documents 5. Response Format: - Structure responses clearly with relevant subpoints when necessary - For complex information, break down the answer into digestible parts - Include relevant reference points from the documents when applicable - Format numerical data and dates clearly 6. Quality Control: - Verify that responses align with the document content - Don't make assumptions beyond the provided information - If multiple interpretations are possible due to OCR quality, mention all possibilities - Maintain consistency in terminology throughout the conversation Important Rules: - Never make up information not present in the documents - Don't combine information from previous conversations or external knowledge - Always indicate if certain parts of the documents are unclear due to OCR quality - Maintain professional tone while being accessible to students and parents - If the query is out of scope of the uploaded documents, politely redirect to relevant official sources Context from uploaded documents: {context} Chat History: {history} Current Question: {question} Assistant: Let me provide a clear and accurate response based on the uploaded documents... """ embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) new_vector_store = FAISS.load_local( "faiss_index", embeddings, allow_dangerous_deserialization=True ) QA_CHAIN_PROMPT = PromptTemplate( input_variables=["history", "context", "question"], template=template ) qa_chain = RetrievalQA.from_chain_type( llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={ "verbose": True, "prompt": QA_CHAIN_PROMPT, "memory": ConversationBufferMemory(memory_key="history", input_key="question"), } ) return qa_chain def process_files_and_query(files, query): if len(files) > 5: return "Error: You can upload a maximum of 5 files only." # Ensure temp directory exists os.makedirs("temp", exist_ok=True) # Save uploaded files file_paths = [] for file in files: file_path = os.path.join("temp", os.path.basename(file)) with open(file_path, "wb") as f: f.write(open(file, 'rb').read()) file_paths.append(file_path) # Process files and create vector store process_ocr_and_pdf_files(file_paths) # Perform query embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True} ) new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(query) chain = get_conversational_chain() response = chain({"input_documents": docs, "query": query}, return_only_outputs=True) result = response.get("result", "No result found") return result def handle_uploaded_file(uploaded_files, show_in_sidebar=False): sidebar_content = "" if len(uploaded_files) > 5: return "Error: You can upload a maximum of 5 files only." # If the uploaded_files is a list, process each file for uploaded_file in uploaded_files: # Determine the file extension file_extension = os.path.splitext(uploaded_file.name)[1].lower() file_path = os.path.join("temp", uploaded_file.name) os.makedirs(os.path.dirname(file_path), exist_ok=True) # Check if the uploaded file is in 'NamedString' format (Gradio sometimes returns it this way) if isinstance(uploaded_file, gr.File): # In this case, read the file directly from the 'data' attribute file_data = uploaded_file.read() # This is the file content in bytes # Save the file content to a local file with open(file_path, "wb") as f: f.write(file_data) if file_extension == ".pdf": # Read and encode the PDF as base64 to embed in the sidebar with open(file_path, "rb") as pdf_file: pdf_data = pdf_file.read() pdf_base64 = base64.b64encode(pdf_data).decode('utf-8') sidebar_content += f'' elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']: # Display image in the sidebar img = Image.open(file_path) img_byte_array = BytesIO() img.save(img_byte_array, format="PNG") img_byte_array.seek(0) sidebar_content += f'' else: # For text files, show the file content with open(file_path, 'r', encoding='utf-8') as f: content = f.read() sidebar_content += f"
{content}
" return sidebar_content # Gradio interface setup def upload_and_display(files): if len(files) > 5: return "Error: You can upload a maximum of 5 files only." sidebar_content = handle_uploaded_file(files, show_in_sidebar=True) return sidebar_content def launch_gradio_app(): with gr.Blocks() as demo: gr.Markdown("# Document OCR and Q&A Assistant") with gr.Row(): with gr.Column(scale=1): # Main content area (adjusted scale to an integer) file_input = gr.File( file_count="multiple", type="filepath", # Changed from 'filepath' to 'file' file_types=[".pdf", ".jpg", ".jpeg", ".png", ".bmp"], label="Upload Documents (PDF/Images)" ) query_input = gr.Textbox( label="Ask a Question about the Documents", lines=3 ) submit_btn = gr.Button("Process and Query") output = gr.Textbox(label="Answer", lines=5) submit_btn.click( fn=process_files_and_query, inputs=[file_input, query_input], outputs=[output] ) with gr.Column(scale=1): # Sidebar (adjusted scale to an integer) gr.Markdown("## Sidebar") file_preview = gr.HTML(label="File Preview") # Display the preview content here file_input.change(fn=upload_and_display, inputs=file_input, outputs=file_preview) return demo # Launch the Gradio app if __name__ == "__main__": app = launch_gradio_app() app.launch(share=True) # Set share=True to create a public link # # Launch the Gradio app # if __name__ == "__main__": # app = launch_gradio_app() # # app.launch() # app.launch(share=True) # demo.launch()