Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +222 -0
- apt.txt +1 -0
- requirements.txt +20 -0
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""App
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
"""
|
6 |
+
|
7 |
+
# Note: The eSpeak installation code has been removed.
|
8 |
+
# Instead, ensure that "espeak" is listed in your apt.txt file for Hugging Face Spaces.
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
from transformers import pipeline
|
13 |
+
import os
|
14 |
+
import groq
|
15 |
+
|
16 |
+
# Updated imports to address LangChain deprecation warnings:
|
17 |
+
from langchain_groq import ChatGroq
|
18 |
+
from langchain.schema import HumanMessage
|
19 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
+
from langchain_community.vectorstores import Chroma
|
21 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
22 |
+
from langchain.docstore.document import Document
|
23 |
+
|
24 |
+
# Importing chardet (make sure to add chardet to your requirements.txt)
|
25 |
+
import chardet
|
26 |
+
|
27 |
+
import fitz # PyMuPDF for PDFs
|
28 |
+
import docx # python-docx for Word files
|
29 |
+
import gtts # Google Text-to-Speech library
|
30 |
+
from pptx import Presentation # python-pptx for PowerPoint files
|
31 |
+
import re
|
32 |
+
|
33 |
+
# Initialize Whisper model for speech-to-text
|
34 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
35 |
+
|
36 |
+
# Set API Key (Ensure it's stored securely in an environment variable)
|
37 |
+
groq.api_key = os.getenv("GROQ_API_KEY") # Replace with a valid API key
|
38 |
+
|
39 |
+
# Initialize Chat Model
|
40 |
+
chat_model = ChatGroq(model_name="DeepSeek-R1-Distill-Llama-70b", api_key=groq.api_key)
|
41 |
+
|
42 |
+
# Initialize Embeddings
|
43 |
+
embedding_model = HuggingFaceEmbeddings()
|
44 |
+
|
45 |
+
# Initialize ChromaDB
|
46 |
+
vectorstore = Chroma(embedding_function=embedding_model)
|
47 |
+
|
48 |
+
# Prompt for quiz generation with added remark
|
49 |
+
quiz_prompt = """
|
50 |
+
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material.
|
51 |
+
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags.
|
52 |
+
|
53 |
+
For each question:
|
54 |
+
|
55 |
+
- Provide 4 answer choices (for MCQs), with only one correct answer.
|
56 |
+
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document.
|
57 |
+
- Include an answer key for all questions.
|
58 |
+
- Ensure questions vary in difficulty and encourage comprehension rather than memorization.
|
59 |
+
- Additionally, implement an instant feedback mechanism:
|
60 |
+
- When a user selects an answer, indicate whether it is correct or incorrect.
|
61 |
+
- If incorrect, provide a brief explanation from the document to guide learning.
|
62 |
+
- Ensure responses are concise and educational to enhance understanding.
|
63 |
+
|
64 |
+
Output Example:
|
65 |
+
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________.
|
66 |
+
|
67 |
+
Answer: Agent Core
|
68 |
+
|
69 |
+
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona.
|
70 |
+
|
71 |
+
2. What is the main limitation of LLM-based applications?
|
72 |
+
a) Limited token capacity
|
73 |
+
b) Lack of domain expertise
|
74 |
+
c) Prone to hallucination
|
75 |
+
d) All of the above
|
76 |
+
|
77 |
+
Answer: d) All of the above
|
78 |
+
|
79 |
+
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others.
|
80 |
+
"""
|
81 |
+
|
82 |
+
# Function to clean AI response by removing unwanted formatting
|
83 |
+
def clean_response(response):
|
84 |
+
"""Removes <think> tags, asterisks, and markdown formatting."""
|
85 |
+
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL)
|
86 |
+
cleaned_text = re.sub(r"(\*\*|\*)", "", cleaned_text)
|
87 |
+
cleaned_text = re.sub(r"^#+\s*", "", cleaned_text, flags=re.MULTILINE)
|
88 |
+
return cleaned_text.strip()
|
89 |
+
|
90 |
+
# Function to generate quiz based on content
|
91 |
+
def generate_quiz(content):
|
92 |
+
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}"
|
93 |
+
response = chat_model([HumanMessage(content=prompt)])
|
94 |
+
cleaned_response = clean_response(response.content)
|
95 |
+
return cleaned_response
|
96 |
+
|
97 |
+
# Function to retrieve relevant documents from vectorstore based on user query
|
98 |
+
def retrieve_documents(query):
|
99 |
+
results = vectorstore.similarity_search(query, k=3)
|
100 |
+
return [doc.page_content for doc in results]
|
101 |
+
|
102 |
+
# Function to handle chatbot interactions
|
103 |
+
def chat_with_groq(user_input):
|
104 |
+
try:
|
105 |
+
relevant_docs = retrieve_documents(user_input)
|
106 |
+
context = "\n".join(relevant_docs)
|
107 |
+
response = chat_model([HumanMessage(content=user_input + "\n\nContext:\n" + context)])
|
108 |
+
cleaned_response_text = clean_response(response.content)
|
109 |
+
audio_file = speech_playback(cleaned_response_text)
|
110 |
+
return cleaned_response_text, audio_file
|
111 |
+
except Exception as e:
|
112 |
+
return f"Error: {str(e)}", None
|
113 |
+
|
114 |
+
# Function to play response as speech using gTTS
|
115 |
+
def speech_playback(text):
|
116 |
+
tts = gtts.gTTS(text, lang='en')
|
117 |
+
audio_file = "output_audio.mp3"
|
118 |
+
tts.save(audio_file)
|
119 |
+
return audio_file
|
120 |
+
|
121 |
+
# Function to detect encoding safely
|
122 |
+
def detect_encoding(file_path):
|
123 |
+
try:
|
124 |
+
with open(file_path, "rb") as f:
|
125 |
+
raw_data = f.read(4096)
|
126 |
+
detected = chardet.detect(raw_data)
|
127 |
+
encoding = detected["encoding"]
|
128 |
+
return encoding if encoding else "utf-8"
|
129 |
+
except Exception:
|
130 |
+
return "utf-8"
|
131 |
+
|
132 |
+
# Function to extract text from PDF
|
133 |
+
def extract_text_from_pdf(pdf_path):
|
134 |
+
try:
|
135 |
+
doc = fitz.open(pdf_path)
|
136 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
137 |
+
return text if text.strip() else "No extractable text found."
|
138 |
+
except Exception as e:
|
139 |
+
return f"Error extracting text from PDF: {str(e)}"
|
140 |
+
|
141 |
+
# Function to extract text from Word files (.docx)
|
142 |
+
def extract_text_from_docx(docx_path):
|
143 |
+
try:
|
144 |
+
doc = docx.Document(docx_path)
|
145 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
146 |
+
return text if text.strip() else "No extractable text found."
|
147 |
+
except Exception as e:
|
148 |
+
return f"Error extracting text from Word document: {str(e)}"
|
149 |
+
|
150 |
+
# Function to extract text from PowerPoint files (.pptx)
|
151 |
+
def extract_text_from_pptx(pptx_path):
|
152 |
+
try:
|
153 |
+
presentation = Presentation(pptx_path)
|
154 |
+
text = ""
|
155 |
+
for slide in presentation.slides:
|
156 |
+
for shape in slide.shapes:
|
157 |
+
if hasattr(shape, "text"):
|
158 |
+
text += shape.text + "\n"
|
159 |
+
return text if text.strip() else "No extractable text found."
|
160 |
+
except Exception as e:
|
161 |
+
return f"Error extracting text from PowerPoint: {str(e)}"
|
162 |
+
|
163 |
+
# Function to process documents safely
|
164 |
+
def process_document(file):
|
165 |
+
try:
|
166 |
+
file_extension = os.path.splitext(file.name)[-1].lower()
|
167 |
+
if file_extension in [".png", ".jpg", ".jpeg"]:
|
168 |
+
return "Error: Images cannot be processed for text extraction."
|
169 |
+
if file_extension == ".pdf":
|
170 |
+
content = extract_text_from_pdf(file.name)
|
171 |
+
elif file_extension == ".docx":
|
172 |
+
content = extract_text_from_docx(file.name)
|
173 |
+
elif file_extension == ".pptx":
|
174 |
+
content = extract_text_from_pptx(file.name)
|
175 |
+
else:
|
176 |
+
encoding = detect_encoding(file.name)
|
177 |
+
with open(file.name, "r", encoding=encoding, errors="replace") as f:
|
178 |
+
content = f.read()
|
179 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
180 |
+
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)]
|
181 |
+
vectorstore.add_documents(documents)
|
182 |
+
quiz = generate_quiz(content)
|
183 |
+
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}"
|
184 |
+
except Exception as e:
|
185 |
+
return f"Error processing document: {str(e)}"
|
186 |
+
|
187 |
+
# Function to handle speech-to-text conversion
|
188 |
+
def transcribe_audio(audio):
|
189 |
+
sr, y = audio
|
190 |
+
if y.ndim > 1:
|
191 |
+
y = y.mean(axis=1)
|
192 |
+
y = y.astype(np.float32)
|
193 |
+
y /= np.max(np.abs(y))
|
194 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
195 |
+
|
196 |
+
# Gradio UI
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
gr.HTML("<h2 style='text-align: center;'>AI Tutor</h2>")
|
199 |
+
gr.HTML("""
|
200 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
201 |
+
<img src="https://img.freepik.com/premium-photo/little-girl-is-seen-sitting-front-laptop-computer-engaged-with-nearby-robot-robot-assistant-helping-child-with-homework-ai-generated_585735-12266.jpg" style="max-width: 60%; height: auto; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.2);" />
|
202 |
+
</div>
|
203 |
+
""")
|
204 |
+
with gr.Row():
|
205 |
+
with gr.Column():
|
206 |
+
audio_input = gr.Audio(type="numpy", label="Record Audio")
|
207 |
+
transcription_output = gr.Textbox(label="Transcription")
|
208 |
+
user_input = gr.Textbox(label="Ask a question")
|
209 |
+
chat_output = gr.Textbox(label="Response")
|
210 |
+
audio_output = gr.Audio(label="Audio Playback")
|
211 |
+
submit_btn = gr.Button("Ask")
|
212 |
+
with gr.Column():
|
213 |
+
file_upload = gr.File(label="Upload a document")
|
214 |
+
process_status = gr.Textbox(label="Processing Status", interactive=False)
|
215 |
+
process_btn = gr.Button("Process Document")
|
216 |
+
audio_input.change(fn=transcribe_audio, inputs=audio_input, outputs=transcription_output)
|
217 |
+
transcription_output.change(fn=lambda x: x, inputs=transcription_output, outputs=user_input)
|
218 |
+
submit_btn.click(chat_with_groq, inputs=user_input, outputs=[chat_output, audio_output])
|
219 |
+
process_btn.click(process_document, inputs=file_upload, outputs=process_status)
|
220 |
+
|
221 |
+
# Launch the Gradio app
|
222 |
+
demo.launch()
|
apt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
espeak
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
groq
|
3 |
+
gtts
|
4 |
+
langchain
|
5 |
+
langchain-core
|
6 |
+
langchain-community
|
7 |
+
langchain-text-splitters
|
8 |
+
langgraph
|
9 |
+
chromadb
|
10 |
+
langsmith
|
11 |
+
llama-cpp-python
|
12 |
+
langchain_huggingface
|
13 |
+
pymupdf
|
14 |
+
sentence_transformers
|
15 |
+
langchain-groq
|
16 |
+
langchain-docling
|
17 |
+
langchain-chroma
|
18 |
+
pyttsx3
|
19 |
+
chardet
|
20 |
+
torchaudio
|