Update app.py
Browse files
app.py
CHANGED
@@ -65,9 +65,376 @@ groq.api_key = os.getenv("GROQ_API_KEY") # Replace with a valid API key
|
|
65 |
chat_model = ChatGroq(model_name="deepseek-r1-distill-qwen-32b", api_key=groq.api_key) #DeepSeek-R1-Distill-Llama-70b
|
66 |
|
67 |
# Initialize Embeddings and chromaDB
|
|
|
68 |
embedding_model = HuggingFaceEmbeddings()
|
69 |
vectorstore = Chroma(embedding_function=embedding_model)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Short-term memory for the LLM
|
72 |
chat_memory = []
|
73 |
|
|
|
65 |
chat_model = ChatGroq(model_name="deepseek-r1-distill-qwen-32b", api_key=groq.api_key) #DeepSeek-R1-Distill-Llama-70b
|
66 |
|
67 |
# Initialize Embeddings and chromaDB
|
68 |
+
|
69 |
embedding_model = HuggingFaceEmbeddings()
|
70 |
vectorstore = Chroma(embedding_function=embedding_model)
|
71 |
|
72 |
+
|
73 |
+
# -*- coding: utf-8 -*-
|
74 |
+
"""app
|
75 |
+
|
76 |
+
Automatically generated by Colab.
|
77 |
+
|
78 |
+
Original file is located at
|
79 |
+
https://colab.research.google.com/drive/1jdKA4WQJcLb0_aQ3vtGVM46B1wriSsDv
|
80 |
+
"""
|
81 |
+
|
82 |
+
import gradio as gr
|
83 |
+
import numpy as np
|
84 |
+
from transformers import pipeline
|
85 |
+
import os
|
86 |
+
import time
|
87 |
+
import groq
|
88 |
+
import uuid # For generating unique filenames
|
89 |
+
|
90 |
+
# Updated imports to address LangChain deprecation warnings:
|
91 |
+
from langchain_groq import ChatGroq
|
92 |
+
from langchain.schema import HumanMessage
|
93 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
94 |
+
from langchain_community.vectorstores import Chroma
|
95 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
96 |
+
from langchain.docstore.document import Document
|
97 |
+
|
98 |
+
# Importing chardet (make sure to add chardet to your requirements.txt)
|
99 |
+
import chardet
|
100 |
+
|
101 |
+
import fitz # PyMuPDF for PDFs
|
102 |
+
import docx # python-docx for Word files
|
103 |
+
import gtts # Google Text-to-Speech library
|
104 |
+
from pptx import Presentation # python-pptx for PowerPoint files
|
105 |
+
import re
|
106 |
+
|
107 |
+
|
108 |
+
# Initialize Whisper model for speech-to-text
|
109 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
110 |
+
|
111 |
+
# Set API Key (Ensure it's stored securely in an environment variable)
|
112 |
+
groq.api_key = os.getenv("GROQ_API_KEY", "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") # Replace with a valid API key
|
113 |
+
|
114 |
+
# Initialize Chat Model
|
115 |
+
chat_model = ChatGroq(model_name="deepseek-r1-distill-qwen-32b", api_key=groq.api_key) #DeepSeek-R1-Distill-Llama-70b | deepseek-r1-distill-qwen-32b
|
116 |
+
|
117 |
+
# Initialize Embeddings and chromaDB
|
118 |
+
os.makedirs("chroma_db", exist_ok=True)
|
119 |
+
embedding_model = HuggingFaceEmbeddings()
|
120 |
+
#new
|
121 |
+
vectorstore = Chroma(
|
122 |
+
embedding_function=embedding_model,
|
123 |
+
persist_directory="chroma_db" # Set a valid folder name or path
|
124 |
+
)
|
125 |
+
vectorstore.persist()
|
126 |
+
#end New
|
127 |
+
|
128 |
+
# Short-term memory for the LLM
|
129 |
+
chat_memory = []
|
130 |
+
|
131 |
+
# Prompt for quiz generation with added remark
|
132 |
+
quiz_prompt = """
|
133 |
+
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material.
|
134 |
+
Generate 20 Questions.
|
135 |
+
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags.
|
136 |
+
For each question:
|
137 |
+
- Provide 4 answer choices (for MCQs), with only one correct answer.
|
138 |
+
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document.
|
139 |
+
- Include an answer key for all questions.
|
140 |
+
- Ensure questions vary in difficulty and encourage comprehension rather than memorization.
|
141 |
+
- Additionally, implement an instant feedback mechanism:
|
142 |
+
- When a user selects an answer, indicate whether it is correct or incorrect.
|
143 |
+
- If incorrect, provide a brief explanation from the document to guide learning.
|
144 |
+
- Ensure responses are concise and educational to enhance understanding.
|
145 |
+
Output Example:
|
146 |
+
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________.
|
147 |
+
|
148 |
+
Answer: Agent Core
|
149 |
+
|
150 |
+
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona.
|
151 |
+
|
152 |
+
2. What is the main limitation of LLM-based applications?
|
153 |
+
a) Limited token capacity
|
154 |
+
b) Lack of domain expertise
|
155 |
+
c) Prone to hallucination
|
156 |
+
d) All of the above
|
157 |
+
|
158 |
+
Answer: d) All of the above
|
159 |
+
|
160 |
+
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others.
|
161 |
+
"""
|
162 |
+
|
163 |
+
# Function to clean AI response by removing unwanted formatting
|
164 |
+
def clean_response(response):
|
165 |
+
"""Removes <think> tags, asterisks, and markdown formatting."""
|
166 |
+
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL)
|
167 |
+
cleaned_text = re.sub(r"(\*\*|\*|\[|\])", "", cleaned_text)
|
168 |
+
cleaned_text = re.sub(r"^##+\s*", "", cleaned_text, flags=re.MULTILINE)
|
169 |
+
cleaned_text = re.sub(r"\\", "", cleaned_text)
|
170 |
+
cleaned_text = re.sub(r"---", "", cleaned_text)
|
171 |
+
return cleaned_text.strip()
|
172 |
+
|
173 |
+
# Function to generate quiz based on content
|
174 |
+
def generate_quiz(content):
|
175 |
+
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}"
|
176 |
+
response = chat_model([HumanMessage(content=prompt)])
|
177 |
+
cleaned_response = clean_response(response.content)
|
178 |
+
return cleaned_response
|
179 |
+
|
180 |
+
# Function to retrieve relevant documents from vectorstore based on user query
|
181 |
+
def retrieve_documents(query):
|
182 |
+
results = vectorstore.similarity_search(query, k=3)
|
183 |
+
return [doc.page_content for doc in results]
|
184 |
+
|
185 |
+
# Function to handle chatbot interactions with short-term memory
|
186 |
+
def chat_with_groq(user_input):
|
187 |
+
try:
|
188 |
+
# Retrieve relevant documents for additional context
|
189 |
+
relevant_docs = retrieve_documents(user_input)
|
190 |
+
context = "\n".join(relevant_docs) if relevant_docs else "No relevant documents found."
|
191 |
+
|
192 |
+
# Construct proper prompting with conversation history
|
193 |
+
system_prompt = "You are a helpful AI assistant. Answer questions accurately and concisely."
|
194 |
+
conversation_history = "\n".join(chat_memory[-10:]) # Keep the last 10 exchanges
|
195 |
+
prompt = f"{system_prompt}\n\nConversation History:\n{conversation_history}\n\nUser Input: {user_input}\n\nContext:\n{context}"
|
196 |
+
|
197 |
+
# Call the chat model
|
198 |
+
response = chat_model([HumanMessage(content=prompt)])
|
199 |
+
|
200 |
+
# Clean response to remove any unwanted formatting
|
201 |
+
cleaned_response_text = clean_response(response.content)
|
202 |
+
|
203 |
+
# Append conversation history
|
204 |
+
chat_memory.append(f"User: {user_input}")
|
205 |
+
chat_memory.append(f"AI: {cleaned_response_text}")
|
206 |
+
|
207 |
+
# Convert response to speech
|
208 |
+
audio_file = speech_playback(cleaned_response_text)
|
209 |
+
|
210 |
+
# Ensure the return format is a list of tuples
|
211 |
+
return [(user_input, cleaned_response_text)], audio_file
|
212 |
+
except Exception as e:
|
213 |
+
return [("Error", str(e))], None
|
214 |
+
|
215 |
+
|
216 |
+
# Function to play response as speech using gTTS
|
217 |
+
def speech_playback(text):
|
218 |
+
try:
|
219 |
+
# Generate a unique filename for each audio file
|
220 |
+
unique_id = str(uuid.uuid4())
|
221 |
+
audio_file = f"output_audio_{unique_id}.mp3"
|
222 |
+
|
223 |
+
# Convert text to speech
|
224 |
+
tts = gtts.gTTS(text, lang='en')
|
225 |
+
tts.save(audio_file)
|
226 |
+
|
227 |
+
# Return the path to the audio file
|
228 |
+
return audio_file
|
229 |
+
except Exception as e:
|
230 |
+
print(f"Error in speech_playback: {e}")
|
231 |
+
return None
|
232 |
+
|
233 |
+
# Function to detect encoding safely
|
234 |
+
def detect_encoding(file_path):
|
235 |
+
try:
|
236 |
+
with open(file_path, "rb") as f:
|
237 |
+
raw_data = f.read(4096)
|
238 |
+
detected = chardet.detect(raw_data)
|
239 |
+
encoding = detected["encoding"]
|
240 |
+
return encoding if encoding else "utf-8"
|
241 |
+
except Exception:
|
242 |
+
return "utf-8"
|
243 |
+
|
244 |
+
# Function to extract text from PDF
|
245 |
+
def extract_text_from_pdf(pdf_path):
|
246 |
+
try:
|
247 |
+
doc = fitz.open(pdf_path)
|
248 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
249 |
+
return text if text.strip() else "No extractable text found."
|
250 |
+
except Exception as e:
|
251 |
+
return f"Error extracting text from PDF: {str(e)}"
|
252 |
+
|
253 |
+
# Function to extract text from Word files (.docx)
|
254 |
+
def extract_text_from_docx(docx_path):
|
255 |
+
try:
|
256 |
+
doc = docx.Document(docx_path)
|
257 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
258 |
+
return text if text.strip() else "No extractable text found."
|
259 |
+
except Exception as e:
|
260 |
+
return f"Error extracting text from Word document: {str(e)}"
|
261 |
+
|
262 |
+
# Function to extract text from PowerPoint files (.pptx)
|
263 |
+
def extract_text_from_pptx(pptx_path):
|
264 |
+
try:
|
265 |
+
presentation = Presentation(pptx_path)
|
266 |
+
text = ""
|
267 |
+
for slide in presentation.slides:
|
268 |
+
for shape in slide.shapes:
|
269 |
+
if hasattr(shape, "text"):
|
270 |
+
text += shape.text + "\n"
|
271 |
+
return text if text.strip() else "No extractable text found."
|
272 |
+
except Exception as e:
|
273 |
+
return f"Error extracting text from PowerPoint: {str(e)}"
|
274 |
+
|
275 |
+
# Function to process documents safely
|
276 |
+
def process_document(file):
|
277 |
+
try:
|
278 |
+
file_extension = os.path.splitext(file.name)[-1].lower()
|
279 |
+
if file_extension in [".png", ".jpg", ".jpeg"]:
|
280 |
+
return "Error: Images cannot be processed for text extraction."
|
281 |
+
if file_extension == ".pdf":
|
282 |
+
content = extract_text_from_pdf(file.name)
|
283 |
+
elif file_extension == ".docx":
|
284 |
+
content = extract_text_from_docx(file.name)
|
285 |
+
elif file_extension == ".pptx":
|
286 |
+
content = extract_text_from_pptx(file.name)
|
287 |
+
else:
|
288 |
+
encoding = detect_encoding(file.name)
|
289 |
+
with open(file.name, "r", encoding=encoding, errors="replace") as f:
|
290 |
+
content = f.read()
|
291 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
292 |
+
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)]
|
293 |
+
vectorstore.add_documents(documents)
|
294 |
+
vectorstore.persist() # <-- Persist changes after adding documents
|
295 |
+
|
296 |
+
quiz = generate_quiz(content)
|
297 |
+
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}"
|
298 |
+
except Exception as e:
|
299 |
+
return f"Error processing document: {str(e)}"
|
300 |
+
|
301 |
+
# Function to handle speech-to-text conversion
|
302 |
+
def transcribe_audio(audio):
|
303 |
+
sr, y = audio
|
304 |
+
if y.ndim > 1:
|
305 |
+
y = y.mean(axis=1)
|
306 |
+
y = y.astype(np.float32)
|
307 |
+
y /= np.max(np.abs(y))
|
308 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
309 |
+
|
310 |
+
# Modify chat_with_groq function to return audio file for playback
|
311 |
+
def chat_with_groq(user_input):
|
312 |
+
try:
|
313 |
+
# Retrieve relevant documents for additional context
|
314 |
+
relevant_docs = retrieve_documents(user_input)
|
315 |
+
context = "\n".join(relevant_docs) if relevant_docs else "No relevant documents found."
|
316 |
+
|
317 |
+
# Construct proper prompting with conversation history
|
318 |
+
system_prompt = "You are a helpful AI assistant. Answer questions accurately and concisely."
|
319 |
+
conversation_history = "\n".join(chat_memory[-10:]) # Keep the last 10 exchanges
|
320 |
+
prompt = f"{system_prompt}\n\nConversation History:\n{conversation_history}\n\nUser Input: {user_input}\n\nContext:\n{context}"
|
321 |
+
|
322 |
+
# Call the chat model
|
323 |
+
response = chat_model([HumanMessage(content=prompt)])
|
324 |
+
|
325 |
+
# Clean response to remove any unwanted formatting
|
326 |
+
cleaned_response_text = clean_response(response.content)
|
327 |
+
|
328 |
+
# Append conversation history
|
329 |
+
chat_memory.append(f"User: {user_input}")
|
330 |
+
chat_memory.append(f"AI: {cleaned_response_text}")
|
331 |
+
|
332 |
+
# Convert response to speech
|
333 |
+
audio_file = speech_playback(cleaned_response_text)
|
334 |
+
|
335 |
+
# Return both chat response and audio file path
|
336 |
+
return [(user_input, cleaned_response_text)], audio_file # Return as a tuple
|
337 |
+
except Exception as e:
|
338 |
+
return [("Error", str(e))], None
|
339 |
+
|
340 |
+
#__________________________________________________________________________________________________________________________
|
341 |
+
|
342 |
+
def tutor_ai_chatbot():
|
343 |
+
"""Main Gradio interface for the Tutor AI Chatbot."""
|
344 |
+
with gr.Blocks() as app:
|
345 |
+
gr.Markdown("# 📚 AI Tutor - We.(POC)")
|
346 |
+
gr.Markdown("An interactive Personal AI Tutor chatbot to help with your learning needs.")
|
347 |
+
|
348 |
+
# Chatbot Tab
|
349 |
+
with gr.Tab("AI Chatbot"):
|
350 |
+
with gr.Row():
|
351 |
+
with gr.Column(scale=3):
|
352 |
+
chatbot = gr.Chatbot(height=500) # Chatbot display area
|
353 |
+
with gr.Row():
|
354 |
+
msg = gr.Textbox(label="Ask a question", placeholder="Type your question here...")
|
355 |
+
submit = gr.Button("Send")
|
356 |
+
|
357 |
+
#with gr.Row():
|
358 |
+
with gr.Column(scale=1):
|
359 |
+
audio_input = gr.Audio(type="numpy", label="Record or Upload Audio") # Audio input for speech-to-text
|
360 |
+
|
361 |
+
|
362 |
+
with gr.Column(scale=1):
|
363 |
+
audio_playback = gr.Audio(label="Audio Response", type="filepath")
|
364 |
+
|
365 |
+
# Clear chat history button
|
366 |
+
clear_btn = gr.Button("Clear Chat")
|
367 |
+
|
368 |
+
# Handle chat interaction
|
369 |
+
submit.click(
|
370 |
+
chat_with_groq,
|
371 |
+
inputs=[msg],
|
372 |
+
outputs=[chatbot, audio_playback]
|
373 |
+
)
|
374 |
+
|
375 |
+
# Clear chat history function
|
376 |
+
def clear_chat_history():
|
377 |
+
return None, None
|
378 |
+
|
379 |
+
clear_btn.click(clear_chat_history, inputs=None, outputs=[chatbot, audio_playback]) #,audio_input
|
380 |
+
|
381 |
+
# Also allow Enter key to submit
|
382 |
+
msg.submit(
|
383 |
+
chat_with_groq,
|
384 |
+
inputs=[msg],
|
385 |
+
outputs=[chatbot, audio_playback]
|
386 |
+
)
|
387 |
+
|
388 |
+
# Add some examples of questions students might ask
|
389 |
+
with gr.Accordion("Example Questions", open=False):
|
390 |
+
gr.Examples(
|
391 |
+
examples=[
|
392 |
+
"Can you explain the concept of RLHF AI?",
|
393 |
+
"What are AI transformers?",
|
394 |
+
"What is MoE AI?",
|
395 |
+
"What's gate networks AI?",
|
396 |
+
"I am making a switch, please generating baking recipe?"
|
397 |
+
],
|
398 |
+
inputs=msg
|
399 |
+
)
|
400 |
+
|
401 |
+
# Upload Notes & Generate Quiz Tab
|
402 |
+
with gr.Tab("Upload Notes & Generate Quiz"):
|
403 |
+
with gr.Row():
|
404 |
+
with gr.Column(scale=2):
|
405 |
+
file_input = gr.File(label="Upload Lecture Notes (PDF, DOCX, PPTX)")
|
406 |
+
#generate_btn = gr.Button("Generate Quiz")
|
407 |
+
with gr.Column(scale=3):
|
408 |
+
quiz_output = gr.Textbox(label="Generated Quiz", lines=10)
|
409 |
+
|
410 |
+
|
411 |
+
# Introduction Video
|
412 |
+
with gr.Tab("Introduction Video"):
|
413 |
+
with gr.Row():
|
414 |
+
with gr.Column(scale=1):
|
415 |
+
#with gr.Column(scale=1): # Adjust scale for equal width
|
416 |
+
gr.Markdown("### Welcome to the Introduction Video") # Adding a heading
|
417 |
+
gr.Markdown("Music from Xu Mengyuan - China-O, musician Xu Mengyuan YUAN! | 徐梦圆 - China-O 音乐人徐梦圆YUAN! ") # Adding descriptive text
|
418 |
+
gr.Video("https://github.com/lesterchia1/AI_tutor/raw/main/We%20not%20me%20video.mp4", label="Introduction Video")
|
419 |
+
|
420 |
+
|
421 |
+
# Connect the button to the document processing function
|
422 |
+
audio_input.change(fn=transcribe_audio, inputs=audio_input, outputs=msg) # transcribe and fill the msg textbox
|
423 |
+
file_input.change(process_document, inputs=file_input, outputs=quiz_output)
|
424 |
+
|
425 |
+
|
426 |
+
# Launch the application
|
427 |
+
app.launch(share=True) # Set share=True to create a public link
|
428 |
+
|
429 |
+
|
430 |
+
# Launch the AI chatbot
|
431 |
+
if __name__ == "__main__":
|
432 |
+
tutor_ai_chatbot()
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
# Short-term memory for the LLM
|
439 |
chat_memory = []
|
440 |
|