File size: 11,880 Bytes
b479e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b93755
b479e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# -*- coding: utf-8 -*-
"""App

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1TdjbTSA8V5GUProQ3Bd-uYmTLXSInoWf
"""

import gradio as gr
import numpy as np
from transformers import pipeline
import os
import time
import groq
import uuid  # For generating unique filenames

# Updated imports to address LangChain deprecation warnings:
from langchain_groq import ChatGroq
from langchain.schema import HumanMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document

# Importing chardet (make sure to add chardet to your requirements.txt)
import chardet

import fitz  # PyMuPDF for PDFs
import docx  # python-docx for Word files
import gtts  # Google Text-to-Speech library
from pptx import Presentation  # python-pptx for PowerPoint files
import re

# Initialize Whisper model for speech-to-text
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")

# Set API Key (Ensure it's stored securely in an environment variable)
groq.api_key = os.getenv("GROQ_API_KEY")  # Replace with a valid API key

# Initialize Chat Model
chat_model = ChatGroq(model_name="llama-3.3-70b-versatile", api_key=groq.api_key)  #llama-3.3-70b-versatile

# Initialize Embeddings and chromaDB
embedding_model = HuggingFaceEmbeddings()
vectorstore = Chroma(embedding_function=embedding_model)

# Short-term memory for the LLM
chat_memory = []

# Prompt for quiz generation with added remark
quiz_prompt = """
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material.
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags.
For each question:
- Provide 4 answer choices (for MCQs), with only one correct answer.
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document.
- Include an answer key for all questions.
- Ensure questions vary in difficulty and encourage comprehension rather than memorization.
- Additionally, implement an instant feedback mechanism:
    - When a user selects an answer, indicate whether it is correct or incorrect.
    - If incorrect, provide a brief explanation from the document to guide learning.
    - Ensure responses are concise and educational to enhance understanding.
Output Example:
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________.
Answer: Agent Core
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona.
2. What is the main limitation of LLM-based applications?
a) Limited token capacity
b) Lack of domain expertise
c) Prone to hallucination
d) All of the above
Answer: d) All of the above
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others.
"""

# Function to clean AI response by removing unwanted formatting
def clean_response(response):
    """Removes <think> tags, asterisks, and markdown formatting."""
    cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL)
    cleaned_text = re.sub(r"(\*\*|\*)", "", cleaned_text)
    cleaned_text = re.sub(r"^#+\s*", "", cleaned_text, flags=re.MULTILINE)
    cleaned_text = re.sub(r"\\", "", cleaned_text)
    return cleaned_text.strip()

# Function to generate quiz based on content
def generate_quiz(content):
    prompt = f"{quiz_prompt}\n\nDocument content:\n{content}"
    response = chat_model([HumanMessage(content=prompt)])
    cleaned_response = clean_response(response.content)
    return cleaned_response

# Function to retrieve relevant documents from vectorstore based on user query
def retrieve_documents(query):
    results = vectorstore.similarity_search(query, k=3)
    return [doc.page_content for doc in results]

# Function to handle chatbot interactions with short-term memory
def chat_with_groq(user_input):
    try:
        # Retrieve relevant documents for additional context
        relevant_docs = retrieve_documents(user_input)
        context = "\n".join(relevant_docs) if relevant_docs else "No relevant documents found."

        # Construct proper prompting with conversation history
        system_prompt = "You are a helpful AI assistant. Answer questions accurately and concisely."
        conversation_history = "\n".join(chat_memory[-10:])  # Keep the last 10 exchanges
        prompt = f"{system_prompt}\n\nConversation History:\n{conversation_history}\n\nUser Input: {user_input}\n\nContext:\n{context}"

        # Call the chat model
        response = chat_model([HumanMessage(content=prompt)])

        # Clean response to remove any unwanted formatting
        cleaned_response_text = clean_response(response.content)

        # Append conversation history
        chat_memory.append(f"User: {user_input}")
        chat_memory.append(f"AI: {cleaned_response_text}")

        # Convert response to speech
        audio_file = speech_playback(cleaned_response_text)
        
        return cleaned_response_text, audio_file
    except Exception as e:
        return f"Error: {str(e)}", None

# Function to play response as speech using gTTS
def speech_playback(text):
    try:
        # Generate a unique filename for each audio file
        unique_id = str(uuid.uuid4())
        audio_file = f"output_audio_{unique_id}.mp3"
        
        # Convert text to speech
        tts = gtts.gTTS(text, lang='en')
        tts.save(audio_file)
        
        # Return the path to the audio file
        return audio_file
    except Exception as e:
        print(f"Error in speech_playback: {e}")
        return None

# Function to detect encoding safely
def detect_encoding(file_path):
    try:
        with open(file_path, "rb") as f:
            raw_data = f.read(4096)
            detected = chardet.detect(raw_data)
            encoding = detected["encoding"]
        return encoding if encoding else "utf-8"
    except Exception:
        return "utf-8"

# Function to extract text from PDF
def extract_text_from_pdf(pdf_path):
    try:
        doc = fitz.open(pdf_path)
        text = "\n".join([page.get_text("text") for page in doc])
        return text if text.strip() else "No extractable text found."
    except Exception as e:
        return f"Error extracting text from PDF: {str(e)}"

# Function to extract text from Word files (.docx)
def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        text = "\n".join([para.text for para in doc.paragraphs])
        return text if text.strip() else "No extractable text found."
    except Exception as e:
        return f"Error extracting text from Word document: {str(e)}"

# Function to extract text from PowerPoint files (.pptx)
def extract_text_from_pptx(pptx_path):
    try:
        presentation = Presentation(pptx_path)
        text = ""
        for slide in presentation.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text += shape.text + "\n"
        return text if text.strip() else "No extractable text found."
    except Exception as e:
        return f"Error extracting text from PowerPoint: {str(e)}"

# Function to process documents safely
def process_document(file):
    try:
        file_extension = os.path.splitext(file.name)[-1].lower()
        if file_extension in [".png", ".jpg", ".jpeg"]:
            return "Error: Images cannot be processed for text extraction."
        if file_extension == ".pdf":
            content = extract_text_from_pdf(file.name)
        elif file_extension == ".docx":
            content = extract_text_from_docx(file.name)
        elif file_extension == ".pptx":
            content = extract_text_from_pptx(file.name)
        else:
            encoding = detect_encoding(file.name)
            with open(file.name, "r", encoding=encoding, errors="replace") as f:
                content = f.read()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)]
        vectorstore.add_documents(documents)
        quiz = generate_quiz(content)
        return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}"
    except Exception as e:
        return f"Error processing document: {str(e)}"

# Function to handle speech-to-text conversion
def transcribe_audio(audio):
    sr, y = audio
    if y.ndim > 1:
        y = y.mean(axis=1)
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    return transcriber({"sampling_rate": sr, "raw": y})["text"]

# Your cleanup function
def cleanup_old_files(directory=".", age_limit=60):
    """Delete files older than `age_limit` seconds."""
    current_time = time.time()
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        if os.path.isfile(file_path) and filename.startswith("output_audio_"):
            file_age = current_time - os.path.getmtime(file_path)
            if file_age > age_limit:
                os.remove(file_path)


# Gradio UI with Video Clip
with gr.Blocks() as demo:
    gr.HTML("<h2 style='text-align: center;'>AI Tutor - We.</h2>")
    
    # Align image and video side by side
    with gr.Row():
        with gr.Column(scale=1):  # Adjust scale to control width ratio
            gr.HTML("""
                <div style="text-align: center; margin-bottom: 20px;">
                    <img src="https://img.freepik.com/premium-photo/little-girl-is-seen-sitting-front-laptop-computer-engaged-with-nearby-robot-robot-assistant-helping-child-with-homework-ai-generated_585735-12266.jpg" 
                    style="width: 100%; height: auto; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.2);" />
                </div>
            """)
        
        #with gr.Column(scale=1):  # Adjust scale for equal width
            gr.Video("https://github.com/lesterchia1/AI_tutor/raw/main/We%20not%20me%20video.mp4", label="Introduction Video")
        

    # Add other UI elements below
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="numpy", label="Record Audio")
            transcription_output = gr.Textbox(label="Transcription")
            user_input = gr.Textbox(label="Ask a question")
            chat_output = gr.Textbox(label="Response")
            audio_output = gr.Audio(label="Audio Playback")
            submit_btn = gr.Button("Ask")
        with gr.Column():
            file_upload = gr.File(label="Upload a document")
            process_status = gr.Textbox(label="Processing Status")
    
    # Define button actions
    submit_btn.click(chat_with_groq, inputs=user_input, outputs=[chat_output, audio_output])
    audio_input.change(transcribe_audio, inputs=audio_input, outputs=transcription_output)
    transcription_output.change(fn=lambda x: x, inputs=transcription_output, outputs=user_input)
    file_upload.change(process_document, inputs=file_upload, outputs=process_status)

    # Add cleanup function to be triggered periodically (e.g., every time a button is clicked or after certain actions)
    demo.load(lambda: cleanup_old_files(directory="./", age_limit=60), inputs=[], outputs=[])


demo.launch()