Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,40 +7,255 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/1GzjDFYPEtsFsBFnhi3x3B0vWyCE-Dtpb
|
8 |
"""
|
9 |
|
10 |
-
from ultralytics import YOLO
|
11 |
-
from PIL import Image
|
12 |
import gradio as gr
|
13 |
-
|
|
|
14 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
model_path = "/Users/markk/Downloads/best_int8_openvino_model"
|
17 |
-
|
18 |
-
def load_model(repo_id):
|
19 |
-
download_dir = snapshot_download(repo_id)
|
20 |
-
print(download_dir)
|
21 |
-
path = os.path.join(download_dir, "best_int8_openvino_model")
|
22 |
-
print(path)
|
23 |
-
detection_model = YOLO(path, task='detect')
|
24 |
-
return detection_model
|
25 |
-
|
26 |
-
|
27 |
-
def predict(pilimg):
|
28 |
-
source = pilimg
|
29 |
-
result = detection_model.predict(source, conf=0.5, iou=0.6)
|
30 |
-
img_bgr = result[0].plot()
|
31 |
-
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
|
32 |
-
|
33 |
-
return out_pilimg
|
34 |
-
|
35 |
-
REPO_ID = "Lesterchia174/Monkey_Durian"
|
36 |
-
detection_model = load_model(REPO_ID)
|
37 |
-
|
38 |
-
video_url = "https://github.com/lesterchia1/Monkey_Durian/blob/main/Monkey_Durian.mp4"
|
39 |
-
|
40 |
-
gr.Interface(
|
41 |
-
fn=predict,
|
42 |
-
inputs=gr.Image(type="pil"),
|
43 |
-
outputs=gr.Image(type="pil"),
|
44 |
-
title="Monkey Durian Detector",
|
45 |
-
description=f"[Click here to watch the video]({video_url})"
|
46 |
-
).launch(share=True)
|
|
|
7 |
https://colab.research.google.com/drive/1GzjDFYPEtsFsBFnhi3x3B0vWyCE-Dtpb
|
8 |
"""
|
9 |
|
|
|
|
|
10 |
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
from transformers import pipeline
|
13 |
import os
|
14 |
+
import time
|
15 |
+
import groq
|
16 |
+
import uuid # For generating unique filenames
|
17 |
+
|
18 |
+
# Updated imports to address LangChain deprecation warnings:
|
19 |
+
from langchain_groq import ChatGroq
|
20 |
+
from langchain.schema import HumanMessage
|
21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
+
from langchain_community.vectorstores import Chroma
|
23 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
24 |
+
from langchain.docstore.document import Document
|
25 |
+
|
26 |
+
# Importing chardet (make sure to add chardet to your requirements.txt)
|
27 |
+
import chardet
|
28 |
+
|
29 |
+
import fitz # PyMuPDF for PDFs
|
30 |
+
import docx # python-docx for Word files
|
31 |
+
import gtts # Google Text-to-Speech library
|
32 |
+
from pptx import Presentation # python-pptx for PowerPoint files
|
33 |
+
import re
|
34 |
+
|
35 |
+
# Initialize Whisper model for speech-to-text
|
36 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
37 |
+
|
38 |
+
# Set API Key (Ensure it's stored securely in an environment variable)
|
39 |
+
groq.api_key = os.getenv("GROQ_API_KEY", "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") # Replace with a valid API key
|
40 |
+
|
41 |
+
# Initialize Chat Model
|
42 |
+
chat_model = ChatGroq(model_name="deepseek-r1-distill-qwen-32b", api_key=groq.api_key)
|
43 |
+
|
44 |
+
# Initialize Embeddings and chromaDB
|
45 |
+
embedding_model = HuggingFaceEmbeddings()
|
46 |
+
vectorstore = Chroma(embedding_function=embedding_model)
|
47 |
+
|
48 |
+
# Short-term memory for the LLM
|
49 |
+
chat_memory = []
|
50 |
+
|
51 |
+
# Prompt for quiz generation with added remark
|
52 |
+
quiz_prompt = """
|
53 |
+
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material.
|
54 |
+
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags.
|
55 |
+
Please generate 20 Questions.
|
56 |
+
|
57 |
+
For each question:
|
58 |
+
- Provide 4 answer choices (for MCQs), with only one correct answer.
|
59 |
+
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document.
|
60 |
+
- Include an answer key for all questions.
|
61 |
+
- Ensure questions vary in difficulty and encourage comprehension rather than memorization.
|
62 |
+
- Additionally, implement an instant feedback mechanism:
|
63 |
+
- When a user selects an answer, indicate whether it is correct or incorrect.
|
64 |
+
- If incorrect, provide a brief explanation from the document to guide learning.
|
65 |
+
- Ensure responses are concise and educational to enhance understanding.
|
66 |
+
|
67 |
+
Output Example:
|
68 |
+
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________.
|
69 |
+
|
70 |
+
Answer: Agent Core
|
71 |
+
|
72 |
+
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona.
|
73 |
+
|
74 |
+
2. What is the main limitation of LLM-based applications?
|
75 |
+
a) Limited token capacity
|
76 |
+
b) Lack of domain expertise
|
77 |
+
c) Prone to hallucination
|
78 |
+
d) All of the above
|
79 |
+
|
80 |
+
Answer: d) All of the above
|
81 |
+
|
82 |
+
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others.
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
# Function to clean AI response by removing unwanted formatting
|
87 |
+
def clean_response(response):
|
88 |
+
"""Removes <think> tags, asterisks, and markdown formatting."""
|
89 |
+
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL)
|
90 |
+
cleaned_text = re.sub(r"(\*\*|\*|\[|\]|\\n)", "", cleaned_text)
|
91 |
+
cleaned_text = re.sub(r"^##+\s*", "", cleaned_text, flags=re.MULTILINE)
|
92 |
+
cleaned_text = re.sub(r"\\", "", cleaned_text)
|
93 |
+
cleaned_text = re.sub(r"---", "", cleaned_text)
|
94 |
+
return cleaned_text.strip()
|
95 |
+
|
96 |
+
# Function to generate quiz based on content
|
97 |
+
def generate_quiz(content):
|
98 |
+
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}"
|
99 |
+
response = chat_model([HumanMessage(content=prompt)])
|
100 |
+
cleaned_response = clean_response(response.content)
|
101 |
+
return cleaned_response
|
102 |
+
|
103 |
+
# Function to retrieve relevant documents from vectorstore based on user query
|
104 |
+
def retrieve_documents(query):
|
105 |
+
results = vectorstore.similarity_search(query, k=3)
|
106 |
+
return [doc.page_content for doc in results]
|
107 |
+
|
108 |
+
# Function to check content in vector store
|
109 |
+
def check_vectorstore():
|
110 |
+
# Check the content of vectorstore by retrieving some documents
|
111 |
+
results = vectorstore.similarity_search("test", k=3)
|
112 |
+
return [doc.page_content for doc in results]
|
113 |
+
|
114 |
+
# RAG Function: Retrieve context and generate response based on context and query
|
115 |
+
def rag_query_handler(user_input):
|
116 |
+
try:
|
117 |
+
# Retrieve relevant documents for additional context (RAG - retrieval-augmented generation)
|
118 |
+
relevant_docs = retrieve_documents(user_input)
|
119 |
+
context = "\n".join(relevant_docs) if relevant_docs else "No relevant documents found."
|
120 |
+
|
121 |
+
# Combine the context with the user input and conversation history for the final prompt
|
122 |
+
system_prompt = "You are a helpful AI assistant. Answer questions accurately and concisely."
|
123 |
+
conversation_history = "\n".join(chat_memory[-10:]) # Keep the last 10 exchanges
|
124 |
+
prompt = f"{system_prompt}\n\nConversation History:\n{conversation_history}\n\nUser Input: {user_input}\n\nContext:\n{context}"
|
125 |
+
|
126 |
+
# Call the chat model for RAG generation (Retrieve + Generate)
|
127 |
+
response = chat_model([HumanMessage(content=prompt)])
|
128 |
+
|
129 |
+
# Clean response to remove any unwanted formatting
|
130 |
+
cleaned_response_text = clean_response(response.content)
|
131 |
+
|
132 |
+
# Append conversation history for future queries
|
133 |
+
chat_memory.append(f"User: {user_input}")
|
134 |
+
chat_memory.append(f"AI: {cleaned_response_text}")
|
135 |
+
|
136 |
+
# Convert response to speech
|
137 |
+
audio_file = speech_playback(cleaned_response_text)
|
138 |
+
|
139 |
+
# Return both chat response and audio file path
|
140 |
+
return [(user_input, cleaned_response_text)], audio_file # Return as a tuple
|
141 |
+
except Exception as e:
|
142 |
+
return [("Error", str(e))], None
|
143 |
+
|
144 |
+
# Function to play response as speech using gTTS
|
145 |
+
def speech_playback(text):
|
146 |
+
try:
|
147 |
+
# Generate a unique filename for each audio file
|
148 |
+
unique_id = str(uuid.uuid4())
|
149 |
+
audio_file = f"output_audio_{unique_id}.mp3"
|
150 |
+
|
151 |
+
# Convert text to speech
|
152 |
+
tts = gtts.gTTS(text, lang='zh-CN')
|
153 |
+
tts.save(audio_file)
|
154 |
+
|
155 |
+
# Return the path to the audio file
|
156 |
+
return audio_file
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error in speech_playback: {e}")
|
159 |
+
return None
|
160 |
+
|
161 |
+
# Function to detect encoding safely
|
162 |
+
def detect_encoding(file_path):
|
163 |
+
try:
|
164 |
+
with open(file_path, "rb") as f:
|
165 |
+
raw_data = f.read(4096)
|
166 |
+
detected = chardet.detect(raw_data)
|
167 |
+
encoding = detected["encoding"]
|
168 |
+
return encoding if encoding else "utf-8"
|
169 |
+
except Exception:
|
170 |
+
return "utf-8"
|
171 |
+
|
172 |
+
# Function to extract text from PDF
|
173 |
+
def extract_text_from_pdf(pdf_path):
|
174 |
+
try:
|
175 |
+
doc = fitz.open(pdf_path)
|
176 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
177 |
+
return text if text.strip() else "No extractable text found."
|
178 |
+
except Exception as e:
|
179 |
+
return f"Error extracting text from PDF: {str(e)}"
|
180 |
+
|
181 |
+
# Function to extract text from Word files (.docx)
|
182 |
+
def extract_text_from_docx(docx_path):
|
183 |
+
try:
|
184 |
+
doc = docx.Document(docx_path)
|
185 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
186 |
+
return text if text.strip() else "No extractable text found."
|
187 |
+
except Exception as e:
|
188 |
+
return f"Error extracting text from Word document: {str(e)}"
|
189 |
+
|
190 |
+
# Function to extract text from PowerPoint files (.pptx)
|
191 |
+
def extract_text_from_pptx(pptx_path):
|
192 |
+
try:
|
193 |
+
presentation = Presentation(pptx_path)
|
194 |
+
text = ""
|
195 |
+
for slide in presentation.slides:
|
196 |
+
for shape in slide.shapes:
|
197 |
+
if hasattr(shape, "text"):
|
198 |
+
text += shape.text + "\n"
|
199 |
+
return text if text.strip() else "No extractable text found."
|
200 |
+
except Exception as e:
|
201 |
+
return f"Error extracting text from PowerPoint: {str(e)}"
|
202 |
+
|
203 |
+
# Function to process documents safely
|
204 |
+
def process_document(file):
|
205 |
+
try:
|
206 |
+
file_extension = os.path.splitext(file.name)[-1].lower()
|
207 |
+
if file_extension in [".png", ".jpg", ".jpeg"]:
|
208 |
+
return "Error: Images cannot be processed for text extraction."
|
209 |
+
if file_extension == ".pdf":
|
210 |
+
content = extract_text_from_pdf(file.name)
|
211 |
+
elif file_extension == ".docx":
|
212 |
+
content = extract_text_from_docx(file.name)
|
213 |
+
elif file_extension == ".pptx":
|
214 |
+
content = extract_text_from_pptx(file.name)
|
215 |
+
else:
|
216 |
+
encoding = detect_encoding(file.name)
|
217 |
+
with open(file.name, "r", encoding=encoding, errors="replace") as f:
|
218 |
+
content = f.read()
|
219 |
+
|
220 |
+
# Split content into chunks for vector store indexing
|
221 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
222 |
+
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)]
|
223 |
+
|
224 |
+
# Add documents to vectorstore
|
225 |
+
vectorstore.add_documents(documents)
|
226 |
+
|
227 |
+
# Check the content in vectorstore
|
228 |
+
vectorstore_content = check_vectorstore()
|
229 |
+
|
230 |
+
# Generate quiz based on document content
|
231 |
+
quiz = generate_quiz(content)
|
232 |
+
|
233 |
+
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}\n\nVectorstore Content:\n{vectorstore_content}"
|
234 |
+
except Exception as e:
|
235 |
+
return f"Error processing document: {str(e)}"
|
236 |
+
|
237 |
+
# Create Gradio interface for uploading files and interacting with the model
|
238 |
+
def chatbot_interface():
|
239 |
+
with gr.Blocks() as demo:
|
240 |
+
with gr.Tab("Upload Document"):
|
241 |
+
with gr.Column():
|
242 |
+
file_input = gr.File(label="Upload Document")
|
243 |
+
submit_button = gr.Button("Submit")
|
244 |
+
result_output = gr.Textbox(label="Processed Output", interactive=False)
|
245 |
+
audio_output = gr.Audio(label="Generated Speech")
|
246 |
+
|
247 |
+
with gr.Tab("Chat with AI"):
|
248 |
+
with gr.Column():
|
249 |
+
user_input = gr.Textbox(label="Ask a Question")
|
250 |
+
chat_button = gr.Button("Ask")
|
251 |
+
chat_output = gr.Textbox(label="Chat Response", interactive=False)
|
252 |
+
audio_output = gr.Audio(label="Generated Speech")
|
253 |
+
|
254 |
+
submit_button.click(process_document, inputs=file_input, outputs=result_output)
|
255 |
+
chat_button.click(rag_query_handler, inputs=user_input, outputs=[chat_output, audio_output])
|
256 |
+
|
257 |
+
demo.launch()
|
258 |
+
|
259 |
+
# Run chatbot interface
|
260 |
+
chatbot_interface()
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|