|
|
|
"""App |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1TdjbTSA8V5GUProQ3Bd-uYmTLXSInoWf |
|
""" |
|
|
|
import subprocess |
|
|
|
def install_espeak(): |
|
try: |
|
|
|
subprocess.run(["apt-get", "install", "espeak", "-y"], check=True) |
|
print("eSpeak installed successfully!") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error occurred while installing eSpeak: {e}") |
|
|
|
|
|
install_espeak() |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from transformers import pipeline |
|
import os |
|
import groq |
|
from langchain_groq import ChatGroq |
|
from langchain.schema import HumanMessage |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.docstore.document import Document |
|
import chardet |
|
import fitz |
|
import docx |
|
import gtts |
|
from pptx import Presentation |
|
import re |
|
|
|
|
|
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") |
|
|
|
|
|
groq.api_key = os.getenv("GROQ_API_KEY", "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") |
|
|
|
|
|
chat_model = ChatGroq(model_name="DeepSeek-R1-Distill-Llama-70b", api_key=groq.api_key) |
|
|
|
|
|
embedding_model = HuggingFaceEmbeddings() |
|
|
|
|
|
vectorstore = Chroma(embedding_function=embedding_model) |
|
|
|
|
|
quiz_prompt = """ |
|
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material. |
|
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags." |
|
|
|
For each question: |
|
|
|
- Provide 4 answer choices (for MCQs), with only one correct answer. |
|
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document. |
|
- Include an answer key for all questions. |
|
- Ensure questions vary in difficulty and encourage comprehension rather than memorization. |
|
- Additionally, implement an instant feedback mechanism: |
|
- When a user selects an answer, indicate whether it is correct or incorrect. |
|
- If incorrect, provide a brief explanation from the document to guide learning. |
|
- Ensure responses are concise and educational to enhance understanding. |
|
|
|
Output Example: |
|
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________. |
|
|
|
Answer: Agent Core |
|
|
|
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona. |
|
|
|
2. What is the main limitation of LLM-based applications? |
|
a) Limited token capacity |
|
b) Lack of domain expertise |
|
c) Prone to hallucination |
|
d) All of the above |
|
|
|
Answer: d) All of the above |
|
|
|
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others. |
|
|
|
|
|
""" |
|
|
|
|
|
def clean_response(response): |
|
"""Removes <think> tags, asterisks, and markdown formatting.""" |
|
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL) |
|
cleaned_text = re.sub(r"(\*\*|\*)", "", cleaned_text) |
|
cleaned_text = re.sub(r"^#+\s*", "", cleaned_text, flags=re.MULTILINE) |
|
return cleaned_text.strip() |
|
|
|
|
|
def generate_quiz(content): |
|
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}" |
|
response = chat_model([HumanMessage(content=prompt)]) |
|
|
|
|
|
cleaned_response = clean_response(response.content) |
|
|
|
return cleaned_response |
|
|
|
|
|
|
|
def chat_with_groq(user_input): |
|
try: |
|
response = chat_model([HumanMessage(content=user_input)]) |
|
cleaned_response_text = clean_response(response.content) |
|
audio_file = speech_playback(cleaned_response_text) |
|
return cleaned_response_text, audio_file |
|
except Exception as e: |
|
return f"Error: {str(e)}", None |
|
|
|
|
|
def speech_playback(text): |
|
tts = gtts.gTTS(text, lang='en') |
|
audio_file = "output_audio.mp3" |
|
tts.save(audio_file) |
|
return audio_file |
|
|
|
|
|
def detect_encoding(file_path): |
|
try: |
|
with open(file_path, "rb") as f: |
|
raw_data = f.read(4096) |
|
detected = chardet.detect(raw_data) |
|
encoding = detected["encoding"] |
|
return encoding if encoding else "utf-8" |
|
except Exception: |
|
return "utf-8" |
|
|
|
|
|
def extract_text_from_pdf(pdf_path): |
|
try: |
|
doc = fitz.open(pdf_path) |
|
text = "\n".join([page.get_text("text") for page in doc]) |
|
return text if text.strip() else "No extractable text found." |
|
except Exception as e: |
|
return f"Error extracting text from PDF: {str(e)}" |
|
|
|
|
|
def extract_text_from_docx(docx_path): |
|
try: |
|
doc = docx.Document(docx_path) |
|
text = "\n".join([para.text for para in doc.paragraphs]) |
|
return text if text.strip() else "No extractable text found." |
|
except Exception as e: |
|
return f"Error extracting text from Word document: {str(e)}" |
|
|
|
|
|
def extract_text_from_pptx(pptx_path): |
|
try: |
|
presentation = Presentation(pptx_path) |
|
text = "" |
|
for slide in presentation.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text"): |
|
text += shape.text + "\n" |
|
return text if text.strip() else "No extractable text found." |
|
except Exception as e: |
|
return f"Error extracting text from PowerPoint: {str(e)}" |
|
|
|
|
|
def process_document(file): |
|
try: |
|
file_extension = os.path.splitext(file.name)[-1].lower() |
|
|
|
if file_extension in [".png", ".jpg", ".jpeg"]: |
|
return f"Error: Images cannot be processed for text extraction." |
|
|
|
|
|
if file_extension == ".pdf": |
|
content = extract_text_from_pdf(file.name) |
|
elif file_extension == ".docx": |
|
content = extract_text_from_docx(file.name) |
|
elif file_extension == ".pptx": |
|
content = extract_text_from_pptx(file.name) |
|
else: |
|
encoding = detect_encoding(file.name) |
|
with open(file.name, "r", encoding=encoding, errors="replace") as f: |
|
content = f.read() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) |
|
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)] |
|
vectorstore.add_documents(documents) |
|
|
|
|
|
quiz = generate_quiz(content) |
|
|
|
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}" |
|
|
|
except Exception as e: |
|
return f"Error processing document: {str(e)}" |
|
|
|
|
|
def transcribe_audio(audio): |
|
sr, y = audio |
|
|
|
|
|
if y.ndim > 1: |
|
y = y.mean(axis=1) |
|
|
|
y = y.astype(np.float32) |
|
y /= np.max(np.abs(y)) |
|
|
|
return transcriber({"sampling_rate": sr, "raw": y})["text"] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("<h2 style='text-align: center;'>AI Tutor</h2>") |
|
gr.HTML(""" |
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
<img src="https://img.freepik.com/premium-photo/little-girl-is-seen-sitting-front-laptop-computer-engaged-with-nearby-robot-robot-assistant-helping-child-with-homework-ai-generated_585735-12266.jpg" style="max-width: 60%; height: auto; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.2);" /> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_input = gr.Audio(type="numpy", label="Record Audio") |
|
transcription_output = gr.Textbox(label="Transcription") |
|
user_input = gr.Textbox(label="Ask a question") |
|
chat_output = gr.Textbox(label="Response") |
|
audio_output = gr.Audio(label="Audio Playback") |
|
submit_btn = gr.Button("Ask") |
|
with gr.Column(): |
|
file_upload = gr.File(label="Upload a document") |
|
process_status = gr.Textbox(label="Processing Status", interactive=False) |
|
process_btn = gr.Button("Process Document") |
|
|
|
audio_input.change(fn=transcribe_audio, inputs=audio_input, outputs=transcription_output) |
|
transcription_output.change(fn=lambda x: x, inputs=transcription_output, outputs=user_input) |
|
submit_btn.click(chat_with_groq, inputs=user_input, outputs=[chat_output, audio_output]) |
|
process_btn.click(process_document, inputs=file_upload, outputs=process_status) |
|
|
|
|
|
demo.launch() |