Lesterchia174's picture
Update app.py
46e98e9 verified
raw
history blame
11.4 kB
import gradio as gr
import os
import tempfile
import whisper
import re
from groq import Groq
from gtts import gTTS
# Load the local Whisper model for speech-to-text
whisper_model = whisper.load_model("base")
# Instantiate Groq client with API key
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY", "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"))
# Supported languages (separated Malaysian Malay & Indonesian Malay)
SUPPORTED_LANGUAGES = [
"English", "Chinese", "Thai",
"Malaysian Malay", "Indonesian Malay", # Split into two entries
"Korean", "Japanese", "Spanish", "German",
"Hindi", "Urdu", "French", "Russian",
"Tagalog", "Arabic", "Myanmar", "Vietnamese"
]
LANGUAGE_CODES = {
"English": "en", "Chinese": "zh", "Thai": "th",
"Malaysian Malay": "ms", # Bahasa Malaysia (ms)
"Indonesian Malay": "id", # Bahasa Indonesia (id)
"Korean": "ko", "Japanese": "ja", "Spanish": "es",
"German": "de", "Hindi": "hi", "Urdu": "ur",
"French": "fr", "Russian": "ru", "Tagalog": "tl",
"Arabic": "ar", "Myanmar": "my", "Vietnamese": "vi"
}
# Available LLM models
AVAILABLE_MODELS = {
"DeepSeek-R1 llama 70B": "deepseek-r1-distill-llama-70b",
"Qwen 32B": "qwen-qwq-32b",
"Llama-3.3 70B": "llama-3.3-70b-versatile",
"Llama-4 Scout 17B":"meta-llama/llama-4-scout-17b-16e-instruct",
"Llama-4 Maverick 17B": "meta-llama/llama-4-maverick-17b-128e-instruct"
}
def transcribe_audio_locally(audio):
"""Transcribe audio using local Whisper model"""
if audio is None:
return ""
try:
audio_path = audio["name"] if isinstance(audio, dict) and "name" in audio else audio
result = whisper_model.transcribe(audio_path)
return result["text"]
except Exception as e:
print(f"Error transcribing audio locally: {e}")
return f"Error transcribing audio: {str(e)}"
def translate_text(input_text, input_lang, output_langs, model_name):
"""Translate text using Groq's API with the selected model"""
if not input_text or not output_langs:
return []
try:
# Get the actual model ID from our dictionary
model_id = AVAILABLE_MODELS.get(model_name, "meta-llama/llama-4-maverick-17b-128e-instruct")
# Using a more direct instruction to avoid exposing the thinking process
system_prompt = """You are a translation assistant that provides direct, accurate translations.
Do NOT include any thinking, reasoning, or explanations in your response.
Do NOT use phrases like 'In [language]:', 'Translation:' or similar prefixes.
Do NOT use any special formatting like asterisks (**) or other markdown.
Always respond with ONLY the exact translation text itself."""
user_prompt = f"Translate this {input_lang} text: '{input_text}' into the following languages: {', '.join(output_langs)}. Provide each translation on a separate line with the language name as a prefix. Do not use any special formatting or markdown."
response = groq_client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
translation_text = response.choices[0].message.content.strip()
# Remove any "thinking" patterns or COT that might have leaked through
# Remove text between <think> tags if they exist
translation_text = re.sub(r'<think>.*?</think>', '', translation_text, flags=re.DOTALL)
# Remove any asterisks
translation_text = translation_text.replace('**', '')
# Remove any line starting with common thinking patterns
thinking_patterns = [
r'^\s*Let me think.*$',
r'^\s*I need to.*$',
r'^\s*First,.*$',
r'^\s*Okay, so.*$',
r'^\s*Hmm,.*$',
r'^\s*Let\'s break this down.*$'
]
for pattern in thinking_patterns:
translation_text = re.sub(pattern, '', translation_text, flags=re.MULTILINE)
return translation_text
except Exception as e:
print(f"Error translating text: {e}")
return f"Error: {str(e)}"
def synthesize_speech(text, lang):
"""Generate speech from text"""
if not text:
return None
try:
lang_code = LANGUAGE_CODES.get(lang, "en")
tts = gTTS(text=text, lang=lang_code)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
return fp.name
except Exception as e:
print(f"Error synthesizing speech: {e}")
return None
def clear_memory():
"""Clear all fields"""
return "", "", "", "", None, None, None
def process_speech_to_text(audio):
"""Process audio and return the transcribed text"""
if not audio:
return ""
transcribed_text = transcribe_audio_locally(audio)
return transcribed_text
def clean_translation_output(text):
"""Clean translation output to remove any thinking or processing text"""
if not text:
return ""
# Remove any meta-content or thinking
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# Remove asterisks from the text
text = text.replace('**', '')
text = text.replace('*', '')
# Remove lines that appear to be thinking/reasoning
lines = text.split('\n')
cleaned_lines = []
for line in lines:
# Skip lines that look like thinking
if re.search(r'(^I need to|^Let me|^First|^Okay|^Hmm|^I will|^I am thinking|^I should)', line, re.IGNORECASE):
continue
# Keep translations with language names
if ':' in line and any(lang.lower() in line.lower() for lang in SUPPORTED_LANGUAGES):
cleaned_lines.append(line)
# Or keep direct translations without prefixes if they don't look like thinking
elif line.strip() and not re.search(r'(thinking|translating|understand|process)', line, re.IGNORECASE):
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def extract_translations(translations_text, output_langs):
"""Extract clean translations from the model output"""
if not translations_text or not output_langs:
return [""] * 3
# Clean the translations text first
clean_text = clean_translation_output(translations_text)
# Try to match language patterns
translation_results = []
# First try to find language-labeled translations
for lang in output_langs:
pattern = rf'{lang}[\s]*:[\s]*(.*?)(?=\n\s*[A-Z]|$)'
match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL)
if match:
translation_results.append(match.group(1).strip())
# If we couldn't find labeled translations, just split by lines
if not translation_results and '\n' in clean_text:
lines = [line.strip() for line in clean_text.split('\n') if line.strip()]
for line in lines:
# Check if this line has a language prefix
if ':' in line:
parts = line.split(':', 1)
if len(parts) == 2:
translation_results.append(parts[1].strip())
else:
# Just add the line as is if it seems like a translation
translation_results.append(line)
elif not translation_results:
# If no newlines, just use the whole text
translation_results.append(clean_text)
# Ensure we have exactly 3 results
while len(translation_results) < 3:
translation_results.append("")
return translation_results[:3]
def perform_translation(audio, typed_text, input_lang, output_langs, model_name):
"""Main function to handle translation process"""
# Check if we have valid inputs
if not output_langs:
return typed_text, "", "", "", None, None, None
# Limit to 3 output languages
selected_langs = output_langs[:3]
# Get the input text either from typed text or by transcribing audio
input_text = typed_text
if not input_text and audio:
input_text = transcribe_audio_locally(audio)
if not input_text:
return "", "", "", "", None, None, None
# Get translations using the selected model
translations_text = translate_text(input_text, input_lang, selected_langs, model_name)
# Extract clean translations
translation_results = extract_translations(translations_text, selected_langs)
# Generate speech for each valid translation
audio_paths = []
for i, (trans, lang) in enumerate(zip(translation_results, selected_langs)):
if trans:
audio_path = synthesize_speech(trans, lang)
audio_paths.append(audio_path)
else:
audio_paths.append(None)
# Ensure we have exactly 3 audio paths
while len(audio_paths) < 3:
audio_paths.append(None)
# Return results in the expected format
return [input_text] + translation_results + audio_paths
with gr.Blocks() as demo:
gr.Markdown("## 🌍 Multilingual Translator with Speech Support")
with gr.Row():
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, value="English", label="Input Language")
output_langs = gr.CheckboxGroup(choices=SUPPORTED_LANGUAGES, label="Output Languages (select up to 3)")
with gr.Row():
model_selector = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="DeepSeek-R1 llama 70B",
label="Translation Model"
)
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Speak Your Input (upload or record)")
text_input = gr.Textbox(label="Or Type Text", elem_id="text_input")
transcribed_text = gr.Textbox(label="Transcribed Text (from audio)", interactive=False)
translated_outputs = [gr.Textbox(label=f"Translation {i+1}", interactive=False) for i in range(3)]
audio_outputs = [gr.Audio(label=f"Speech Output {i+1}") for i in range(3)]
with gr.Row():
translate_btn = gr.Button("Translate", elem_id="translate_btn")
clear_btn = gr.Button("Clear Memory")
# Handle audio input separately
def on_audio_change(audio):
if audio is None:
return ""
transcribed = process_speech_to_text(audio)
return transcribed
# Update text input when audio is processed
audio_input.change(
on_audio_change,
inputs=[audio_input],
outputs=[text_input]
)
# Enable Enter key to submit
text_input.submit(
perform_translation,
inputs=[audio_input, text_input, input_lang, output_langs, model_selector],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
translate_btn.click(
perform_translation,
inputs=[audio_input, text_input, input_lang, output_langs, model_selector],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
clear_btn.click(
clear_memory,
inputs=[],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
demo.launch()