|
import gradio as gr |
|
import os |
|
import tempfile |
|
import whisper |
|
import re |
|
from groq import Groq |
|
from gtts import gTTS |
|
|
|
|
|
whisper_model = whisper.load_model("base") |
|
|
|
|
|
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY", "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")) |
|
|
|
|
|
SUPPORTED_LANGUAGES = [ |
|
"English", "Chinese", "Thai", "Malay", "Korean", |
|
"Japanese", "Spanish", "German", "Hindi", |
|
"French", "Russian", "Tagalog", "Arabic", |
|
"Myanmar", "Vietnamese" |
|
] |
|
|
|
LANGUAGE_CODES = { |
|
"English": "en", "Chinese": "zh", "Thai": "th", "Malay": "ms", "Korean": "ko", |
|
"Japanese": "ja", "Spanish": "es", "German": "de", "Hindi": "hi", |
|
"French": "fr", "Russian": "ru", "Tagalog": "tl", "Arabic": "ar", |
|
"Myanmar": "my", "Vietnamese": "vi" |
|
} |
|
|
|
|
|
AVAILABLE_MODELS = { |
|
"DeepSeek-R1 Qwen 32B": "deepseek-r1-distill-Qwen-32b", |
|
"Llama-4 Maverick 17B": "meta-llama/llama-4-maverick-17b-128e-instruct" |
|
} |
|
|
|
def transcribe_audio_locally(audio): |
|
"""Transcribe audio using local Whisper model""" |
|
if audio is None: |
|
return "" |
|
|
|
try: |
|
audio_path = audio["name"] if isinstance(audio, dict) and "name" in audio else audio |
|
result = whisper_model.transcribe(audio_path) |
|
return result["text"] |
|
except Exception as e: |
|
print(f"Error transcribing audio locally: {e}") |
|
return f"Error transcribing audio: {str(e)}" |
|
|
|
def translate_text(input_text, input_lang, output_langs, model_name): |
|
"""Translate text using Groq's API with the selected model""" |
|
if not input_text or not output_langs: |
|
return [] |
|
|
|
try: |
|
|
|
model_id = AVAILABLE_MODELS.get(model_name, "meta-llama/llama-4-maverick-17b-128e-instruct") |
|
|
|
|
|
system_prompt = """You are a translation assistant that provides direct, accurate translations. |
|
Do NOT include any thinking, reasoning, or explanations in your response. |
|
Do NOT use phrases like 'In [language]:', 'Translation:' or similar prefixes. |
|
Always respond with ONLY the exact translation text itself.""" |
|
|
|
user_prompt = f"Translate this {input_lang} text: '{input_text}' into the following languages: {', '.join(output_langs)}. Provide each translation on a separate line with the language name as a prefix." |
|
|
|
response = groq_client.chat.completions.create( |
|
model=model_id, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
) |
|
|
|
translation_text = response.choices[0].message.content.strip() |
|
|
|
|
|
|
|
translation_text = re.sub(r'<think>.*?</think>', '', translation_text, flags=re.DOTALL) |
|
|
|
|
|
thinking_patterns = [ |
|
r'^\s*Let me think.*$', |
|
r'^\s*I need to.*$', |
|
r'^\s*First,.*$', |
|
r'^\s*Okay, so.*$', |
|
r'^\s*Hmm,.*$', |
|
r'^\s*Let\'s break this down.*$' |
|
] |
|
|
|
for pattern in thinking_patterns: |
|
translation_text = re.sub(pattern, '', translation_text, flags=re.MULTILINE) |
|
|
|
return translation_text |
|
except Exception as e: |
|
print(f"Error translating text: {e}") |
|
return f"Error: {str(e)}" |
|
|
|
def synthesize_speech(text, lang): |
|
"""Generate speech from text""" |
|
if not text: |
|
return None |
|
|
|
try: |
|
lang_code = LANGUAGE_CODES.get(lang, "en") |
|
tts = gTTS(text=text, lang=lang_code) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: |
|
tts.save(fp.name) |
|
return fp.name |
|
except Exception as e: |
|
print(f"Error synthesizing speech: {e}") |
|
return None |
|
|
|
def clear_memory(): |
|
"""Clear all fields""" |
|
return "", "", "", "", None, None, None |
|
|
|
def process_speech_to_text(audio): |
|
"""Process audio and return the transcribed text""" |
|
if not audio: |
|
return "" |
|
|
|
transcribed_text = transcribe_audio_locally(audio) |
|
return transcribed_text |
|
|
|
def clean_translation_output(text): |
|
"""Clean translation output to remove any thinking or processing text""" |
|
if not text: |
|
return "" |
|
|
|
|
|
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL) |
|
|
|
|
|
lines = text.split('\n') |
|
cleaned_lines = [] |
|
|
|
for line in lines: |
|
|
|
if re.search(r'(^I need to|^Let me|^First|^Okay|^Hmm|^I will|^I am thinking|^I should)', line, re.IGNORECASE): |
|
continue |
|
|
|
|
|
if ':' in line and any(lang.lower() in line.lower() for lang in SUPPORTED_LANGUAGES): |
|
cleaned_lines.append(line) |
|
|
|
elif line.strip() and not re.search(r'(thinking|translating|understand|process)', line, re.IGNORECASE): |
|
cleaned_lines.append(line) |
|
|
|
return '\n'.join(cleaned_lines) |
|
|
|
def extract_translations(translations_text, output_langs): |
|
"""Extract clean translations from the model output""" |
|
if not translations_text or not output_langs: |
|
return [""] * 3 |
|
|
|
|
|
clean_text = clean_translation_output(translations_text) |
|
|
|
|
|
translation_results = [] |
|
|
|
|
|
for lang in output_langs: |
|
pattern = rf'{lang}[\s]*:[\s]*(.*?)(?=\n\s*[A-Z]|$)' |
|
match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL) |
|
if match: |
|
translation_results.append(match.group(1).strip()) |
|
|
|
|
|
if not translation_results and '\n' in clean_text: |
|
lines = [line.strip() for line in clean_text.split('\n') if line.strip()] |
|
|
|
for line in lines: |
|
|
|
if ':' in line: |
|
parts = line.split(':', 1) |
|
if len(parts) == 2: |
|
translation_results.append(parts[1].strip()) |
|
else: |
|
|
|
translation_results.append(line) |
|
elif not translation_results: |
|
|
|
translation_results.append(clean_text) |
|
|
|
|
|
while len(translation_results) < 3: |
|
translation_results.append("") |
|
|
|
return translation_results[:3] |
|
|
|
def perform_translation(audio, typed_text, input_lang, output_langs, model_name): |
|
"""Main function to handle translation process""" |
|
|
|
if not output_langs: |
|
return typed_text, "", "", "", None, None, None |
|
|
|
|
|
selected_langs = output_langs[:3] |
|
|
|
|
|
input_text = typed_text |
|
if not input_text and audio: |
|
input_text = transcribe_audio_locally(audio) |
|
|
|
if not input_text: |
|
return "", "", "", "", None, None, None |
|
|
|
|
|
translations_text = translate_text(input_text, input_lang, selected_langs, model_name) |
|
|
|
|
|
translation_results = extract_translations(translations_text, selected_langs) |
|
|
|
|
|
audio_paths = [] |
|
for i, (trans, lang) in enumerate(zip(translation_results, selected_langs)): |
|
if trans: |
|
audio_path = synthesize_speech(trans, lang) |
|
audio_paths.append(audio_path) |
|
else: |
|
audio_paths.append(None) |
|
|
|
|
|
while len(audio_paths) < 3: |
|
audio_paths.append(None) |
|
|
|
|
|
return [input_text] + translation_results + audio_paths |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## 🌍 Multilingual Translator with Speech Support") |
|
|
|
with gr.Row(): |
|
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, value="English", label="Input Language") |
|
output_langs = gr.CheckboxGroup(choices=SUPPORTED_LANGUAGES, label="Output Languages (select up to 3)") |
|
|
|
with gr.Row(): |
|
model_selector = gr.Dropdown( |
|
choices=list(AVAILABLE_MODELS.keys()), |
|
value="Llama-4 Maverick 17B", |
|
label="Translation Model" |
|
) |
|
|
|
with gr.Row(): |
|
audio_input = gr.Audio(type="filepath", label="Speak Your Input (upload or record)") |
|
text_input = gr.Textbox(label="Or Type Text", elem_id="text_input") |
|
|
|
transcribed_text = gr.Textbox(label="Transcribed Text (from audio)", interactive=False) |
|
translated_outputs = [gr.Textbox(label=f"Translation {i+1}", interactive=False) for i in range(3)] |
|
audio_outputs = [gr.Audio(label=f"Speech Output {i+1}") for i in range(3)] |
|
|
|
with gr.Row(): |
|
translate_btn = gr.Button("Translate", elem_id="translate_btn") |
|
clear_btn = gr.Button("Clear Memory") |
|
|
|
|
|
def on_audio_change(audio): |
|
if audio is None: |
|
return "" |
|
transcribed = process_speech_to_text(audio) |
|
return transcribed |
|
|
|
|
|
audio_input.change( |
|
on_audio_change, |
|
inputs=[audio_input], |
|
outputs=[text_input] |
|
) |
|
|
|
|
|
text_input.submit( |
|
perform_translation, |
|
inputs=[audio_input, text_input, input_lang, output_langs, model_selector], |
|
outputs=[transcribed_text] + translated_outputs + audio_outputs |
|
) |
|
|
|
translate_btn.click( |
|
perform_translation, |
|
inputs=[audio_input, text_input, input_lang, output_langs, model_selector], |
|
outputs=[transcribed_text] + translated_outputs + audio_outputs |
|
) |
|
|
|
clear_btn.click( |
|
clear_memory, |
|
inputs=[], |
|
outputs=[transcribed_text] + translated_outputs + audio_outputs |
|
) |
|
|
|
demo.launch() |