Lesterchia174's picture
Rename app2.py to app.py
8f6c6b0 verified
raw
history blame
10.6 kB
import gradio as gr
import os
import tempfile
import whisper
import re
from groq import Groq
from gtts import gTTS
# Load the local Whisper model for speech-to-text
whisper_model = whisper.load_model("base")
# Instantiate Groq client with API key
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY", "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"))
# Supported languages
SUPPORTED_LANGUAGES = [
"English", "Chinese", "Thai", "Malay", "Korean",
"Japanese", "Spanish", "German", "Hindi",
"French", "Russian", "Tagalog", "Arabic",
"Myanmar", "Vietnamese"
]
LANGUAGE_CODES = {
"English": "en", "Chinese": "zh", "Thai": "th", "Malay": "ms", "Korean": "ko",
"Japanese": "ja", "Spanish": "es", "German": "de", "Hindi": "hi",
"French": "fr", "Russian": "ru", "Tagalog": "tl", "Arabic": "ar",
"Myanmar": "my", "Vietnamese": "vi"
}
# Available LLM models
AVAILABLE_MODELS = {
"DeepSeek Qwen 32B": "deepseek-r1-distill-Qwen-32b",
"Llama-4 Maverick 17B": "meta-llama/llama-4-maverick-17b-128e-instruct"
}
def transcribe_audio_locally(audio):
"""Transcribe audio using local Whisper model"""
if audio is None:
return ""
try:
audio_path = audio["name"] if isinstance(audio, dict) and "name" in audio else audio
result = whisper_model.transcribe(audio_path)
return result["text"]
except Exception as e:
print(f"Error transcribing audio locally: {e}")
return f"Error transcribing audio: {str(e)}"
def translate_text(input_text, input_lang, output_langs, model_name):
"""Translate text using Groq's API with the selected model"""
if not input_text or not output_langs:
return []
try:
# Get the actual model ID from our dictionary
model_id = AVAILABLE_MODELS.get(model_name, "deepseek-r1-distill-Qwen-32b")
# Using a more direct instruction to avoid exposing the thinking process
system_prompt = """You are a translation assistant that provides direct, accurate translations.
Do NOT include any thinking, reasoning, or explanations in your response.
Do NOT use phrases like 'In [language]:', 'Translation:' or similar prefixes.
Always respond with ONLY the exact translation text itself."""
user_prompt = f"Translate this {input_lang} text: '{input_text}' into the following languages: {', '.join(output_langs)}. Provide each translation on a separate line with the language name as a prefix."
response = groq_client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
)
translation_text = response.choices[0].message.content.strip()
# Remove any "thinking" patterns or COT that might have leaked through
# Remove text between <think> tags if they exist
translation_text = re.sub(r'<think>.*?</think>', '', translation_text, flags=re.DOTALL)
# Remove any line starting with common thinking patterns
thinking_patterns = [
r'^\s*Let me think.*$',
r'^\s*I need to.*$',
r'^\s*First,.*$',
r'^\s*Okay, so.*$',
r'^\s*Hmm,.*$',
r'^\s*Let\'s break this down.*$'
]
for pattern in thinking_patterns:
translation_text = re.sub(pattern, '', translation_text, flags=re.MULTILINE)
return translation_text
except Exception as e:
print(f"Error translating text: {e}")
return f"Error: {str(e)}"
def synthesize_speech(text, lang):
"""Generate speech from text"""
if not text:
return None
try:
lang_code = LANGUAGE_CODES.get(lang, "en")
tts = gTTS(text=text, lang=lang_code)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
return fp.name
except Exception as e:
print(f"Error synthesizing speech: {e}")
return None
def clear_memory():
"""Clear all fields"""
return "", "", "", "", None, None, None
def process_speech_to_text(audio):
"""Process audio and return the transcribed text"""
if not audio:
return ""
transcribed_text = transcribe_audio_locally(audio)
return transcribed_text
def clean_translation_output(text):
"""Clean translation output to remove any thinking or processing text"""
if not text:
return ""
# Remove any meta-content or thinking
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# Remove lines that appear to be thinking/reasoning
lines = text.split('\n')
cleaned_lines = []
for line in lines:
# Skip lines that look like thinking
if re.search(r'(^I need to|^Let me|^First|^Okay|^Hmm|^I will|^I am thinking|^I should)', line, re.IGNORECASE):
continue
# Keep translations with language names
if ':' in line and any(lang.lower() in line.lower() for lang in SUPPORTED_LANGUAGES):
cleaned_lines.append(line)
# Or keep direct translations without prefixes if they don't look like thinking
elif line.strip() and not re.search(r'(thinking|translating|understand|process)', line, re.IGNORECASE):
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def extract_translations(translations_text, output_langs):
"""Extract clean translations from the model output"""
if not translations_text or not output_langs:
return [""] * 3
# Clean the translations text first
clean_text = clean_translation_output(translations_text)
# Try to match language patterns
translation_results = []
# First try to find language-labeled translations
for lang in output_langs:
pattern = rf'{lang}[\s]*:[\s]*(.*?)(?=\n\s*[A-Z]|$)'
match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL)
if match:
translation_results.append(match.group(1).strip())
# If we couldn't find labeled translations, just split by lines
if not translation_results and '\n' in clean_text:
lines = [line.strip() for line in clean_text.split('\n') if line.strip()]
for line in lines:
# Check if this line has a language prefix
if ':' in line:
parts = line.split(':', 1)
if len(parts) == 2:
translation_results.append(parts[1].strip())
else:
# Just add the line as is if it seems like a translation
translation_results.append(line)
elif not translation_results:
# If no newlines, just use the whole text
translation_results.append(clean_text)
# Ensure we have exactly 3 results
while len(translation_results) < 3:
translation_results.append("")
return translation_results[:3]
def perform_translation(audio, typed_text, input_lang, output_langs, model_name):
"""Main function to handle translation process"""
# Check if we have valid inputs
if not output_langs:
return typed_text, "", "", "", None, None, None
# Limit to 3 output languages
selected_langs = output_langs[:3]
# Get the input text either from typed text or by transcribing audio
input_text = typed_text
if not input_text and audio:
input_text = transcribe_audio_locally(audio)
if not input_text:
return "", "", "", "", None, None, None
# Get translations using the selected model
translations_text = translate_text(input_text, input_lang, selected_langs, model_name)
# Extract clean translations
translation_results = extract_translations(translations_text, selected_langs)
# Generate speech for each valid translation
audio_paths = []
for i, (trans, lang) in enumerate(zip(translation_results, selected_langs)):
if trans:
audio_path = synthesize_speech(trans, lang)
audio_paths.append(audio_path)
else:
audio_paths.append(None)
# Ensure we have exactly 3 audio paths
while len(audio_paths) < 3:
audio_paths.append(None)
# Return results in the expected format
return [input_text] + translation_results + audio_paths
with gr.Blocks() as demo:
gr.Markdown("## 🌍 Multilingual Translator with Speech Support")
with gr.Row():
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, value="English", label="Input Language")
output_langs = gr.CheckboxGroup(choices=SUPPORTED_LANGUAGES, label="Output Languages (select up to 3)")
with gr.Row():
model_selector = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="DeepSeek Qwen 32B",
label="Translation Model"
)
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Speak Your Input (upload or record)")
text_input = gr.Textbox(label="Or Type Text", elem_id="text_input")
transcribed_text = gr.Textbox(label="Transcribed Text (from audio)", interactive=False)
translated_outputs = [gr.Textbox(label=f"Translation {i+1}", interactive=False) for i in range(3)]
audio_outputs = [gr.Audio(label=f"Speech Output {i+1}") for i in range(3)]
with gr.Row():
translate_btn = gr.Button("Translate", elem_id="translate_btn")
clear_btn = gr.Button("Clear Memory")
# Handle audio input separately
def on_audio_change(audio):
if audio is None:
return ""
transcribed = process_speech_to_text(audio)
return transcribed
# Update text input when audio is processed
audio_input.change(
on_audio_change,
inputs=[audio_input],
outputs=[text_input]
)
# Enable Enter key to submit
text_input.submit(
perform_translation,
inputs=[audio_input, text_input, input_lang, output_langs, model_selector],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
translate_btn.click(
perform_translation,
inputs=[audio_input, text_input, input_lang, output_langs, model_selector],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
clear_btn.click(
clear_memory,
inputs=[],
outputs=[transcribed_text] + translated_outputs + audio_outputs
)
demo.launch()