Upload 3 files
Browse files- app.py +283 -0
- apt.txt +1 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1hDCBaCrOX0FZx8VUT9_cUfWWg7y97yrx
|
8 |
+
"""
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import os
|
12 |
+
import tempfile
|
13 |
+
import whisper
|
14 |
+
import re
|
15 |
+
from groq import Groq
|
16 |
+
from gtts import gTTS
|
17 |
+
|
18 |
+
# Load the local Whisper model for speech-to-text
|
19 |
+
whisper_model = whisper.load_model("base")
|
20 |
+
|
21 |
+
# Instantiate Groq client with API key
|
22 |
+
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY", "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"))
|
23 |
+
|
24 |
+
# Supported languages
|
25 |
+
SUPPORTED_LANGUAGES = [
|
26 |
+
"English", "Chinese", "Thai", "Malay", "Korean",
|
27 |
+
"Japanese", "Spanish", "German", "Hindi",
|
28 |
+
"French", "Russian", "Tagalog", "Arabic"
|
29 |
+
]
|
30 |
+
|
31 |
+
LANGUAGE_CODES = {
|
32 |
+
"English": "en", "Chinese": "zh", "Thai": "th", "Malay": "ms", "Korean": "ko",
|
33 |
+
"Japanese": "ja", "Spanish": "es", "German": "de", "Hindi": "hi",
|
34 |
+
"French": "fr", "Russian": "ru", "Tagalog": "tl", "Arabic": "ar"
|
35 |
+
}
|
36 |
+
|
37 |
+
def transcribe_audio_locally(audio):
|
38 |
+
"""Transcribe audio using local Whisper model"""
|
39 |
+
if audio is None:
|
40 |
+
return ""
|
41 |
+
|
42 |
+
try:
|
43 |
+
audio_path = audio["name"] if isinstance(audio, dict) and "name" in audio else audio
|
44 |
+
result = whisper_model.transcribe(audio_path)
|
45 |
+
return result["text"]
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error transcribing audio locally: {e}")
|
48 |
+
return f"Error transcribing audio: {str(e)}"
|
49 |
+
|
50 |
+
def translate_text(input_text, input_lang, output_langs):
|
51 |
+
"""Translate text using Groq's API with improved prompt to avoid COT"""
|
52 |
+
if not input_text or not output_langs:
|
53 |
+
return []
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Using a more direct instruction to avoid exposing the thinking process
|
57 |
+
system_prompt = """You are a translation assistant that provides direct, accurate translations.
|
58 |
+
Do NOT include any thinking, reasoning, or explanations in your response.
|
59 |
+
Do NOT use phrases like 'In [language]:', 'Translation:' or similar prefixes.
|
60 |
+
Always respond with ONLY the exact translation text itself."""
|
61 |
+
|
62 |
+
user_prompt = f"Translate this {input_lang} text: '{input_text}' into the following languages: {', '.join(output_langs)}. Provide each translation on a separate line with the language name as a prefix."
|
63 |
+
|
64 |
+
response = groq_client.chat.completions.create(
|
65 |
+
model="deepseek-r1-distill-Qwen-32b",
|
66 |
+
messages=[
|
67 |
+
{"role": "system", "content": system_prompt},
|
68 |
+
{"role": "user", "content": user_prompt}
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
translation_text = response.choices[0].message.content.strip()
|
73 |
+
|
74 |
+
# Remove any "thinking" patterns or COT that might have leaked through
|
75 |
+
# Remove text between <think> tags if they exist
|
76 |
+
translation_text = re.sub(r'<think>.*?</think>', '', translation_text, flags=re.DOTALL)
|
77 |
+
|
78 |
+
# Remove any line starting with common thinking patterns
|
79 |
+
thinking_patterns = [
|
80 |
+
r'^\s*Let me think.*$',
|
81 |
+
r'^\s*I need to.*$',
|
82 |
+
r'^\s*First,.*$',
|
83 |
+
r'^\s*Okay, so.*$',
|
84 |
+
r'^\s*Hmm,.*$',
|
85 |
+
r'^\s*Let\'s break this down.*$'
|
86 |
+
]
|
87 |
+
|
88 |
+
for pattern in thinking_patterns:
|
89 |
+
translation_text = re.sub(pattern, '', translation_text, flags=re.MULTILINE)
|
90 |
+
|
91 |
+
return translation_text
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error translating text: {e}")
|
94 |
+
return f"Error: {str(e)}"
|
95 |
+
|
96 |
+
def synthesize_speech(text, lang):
|
97 |
+
"""Generate speech from text"""
|
98 |
+
if not text:
|
99 |
+
return None
|
100 |
+
|
101 |
+
try:
|
102 |
+
lang_code = LANGUAGE_CODES.get(lang, "en")
|
103 |
+
tts = gTTS(text=text, lang=lang_code)
|
104 |
+
|
105 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
106 |
+
tts.save(fp.name)
|
107 |
+
return fp.name
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error synthesizing speech: {e}")
|
110 |
+
return None
|
111 |
+
|
112 |
+
def clear_memory():
|
113 |
+
"""Clear all fields"""
|
114 |
+
return "", "", "", "", None, None, None
|
115 |
+
|
116 |
+
def process_speech_to_text(audio):
|
117 |
+
"""Process audio and return the transcribed text"""
|
118 |
+
if not audio:
|
119 |
+
return ""
|
120 |
+
|
121 |
+
transcribed_text = transcribe_audio_locally(audio)
|
122 |
+
return transcribed_text
|
123 |
+
|
124 |
+
def clean_translation_output(text):
|
125 |
+
"""Clean translation output to remove any thinking or processing text"""
|
126 |
+
if not text:
|
127 |
+
return ""
|
128 |
+
|
129 |
+
# Remove any meta-content or thinking
|
130 |
+
text = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
|
131 |
+
|
132 |
+
# Remove lines that appear to be thinking/reasoning
|
133 |
+
lines = text.split('\n')
|
134 |
+
cleaned_lines = []
|
135 |
+
|
136 |
+
for line in lines:
|
137 |
+
# Skip lines that look like thinking
|
138 |
+
if re.search(r'(^I need to|^Let me|^First|^Okay|^Hmm|^I will|^I am thinking|^I should)', line, re.IGNORECASE):
|
139 |
+
continue
|
140 |
+
|
141 |
+
# Keep translations with language names
|
142 |
+
if ':' in line and any(lang.lower() in line.lower() for lang in SUPPORTED_LANGUAGES):
|
143 |
+
cleaned_lines.append(line)
|
144 |
+
# Or keep direct translations without prefixes if they don't look like thinking
|
145 |
+
elif line.strip() and not re.search(r'(thinking|translating|understand|process)', line, re.IGNORECASE):
|
146 |
+
cleaned_lines.append(line)
|
147 |
+
|
148 |
+
return '\n'.join(cleaned_lines)
|
149 |
+
|
150 |
+
def extract_translations(translations_text, output_langs):
|
151 |
+
"""Extract clean translations from the model output"""
|
152 |
+
if not translations_text or not output_langs:
|
153 |
+
return [""] * 3
|
154 |
+
|
155 |
+
# Clean the translations text first
|
156 |
+
clean_text = clean_translation_output(translations_text)
|
157 |
+
|
158 |
+
# Try to match language patterns
|
159 |
+
translation_results = []
|
160 |
+
|
161 |
+
# First try to find language-labeled translations
|
162 |
+
for lang in output_langs:
|
163 |
+
pattern = rf'{lang}[\s]*:[\s]*(.*?)(?=\n\s*[A-Z]|$)'
|
164 |
+
match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL)
|
165 |
+
if match:
|
166 |
+
translation_results.append(match.group(1).strip())
|
167 |
+
|
168 |
+
# If we couldn't find labeled translations, just split by lines
|
169 |
+
if not translation_results and '\n' in clean_text:
|
170 |
+
lines = [line.strip() for line in clean_text.split('\n') if line.strip()]
|
171 |
+
|
172 |
+
for line in lines:
|
173 |
+
# Check if this line has a language prefix
|
174 |
+
if ':' in line:
|
175 |
+
parts = line.split(':', 1)
|
176 |
+
if len(parts) == 2:
|
177 |
+
translation_results.append(parts[1].strip())
|
178 |
+
else:
|
179 |
+
# Just add the line as is if it seems like a translation
|
180 |
+
translation_results.append(line)
|
181 |
+
elif not translation_results:
|
182 |
+
# If no newlines, just use the whole text
|
183 |
+
translation_results.append(clean_text)
|
184 |
+
|
185 |
+
# Ensure we have exactly 3 results
|
186 |
+
while len(translation_results) < 3:
|
187 |
+
translation_results.append("")
|
188 |
+
|
189 |
+
return translation_results[:3]
|
190 |
+
|
191 |
+
def perform_translation(audio, typed_text, input_lang, output_langs):
|
192 |
+
"""Main function to handle translation process"""
|
193 |
+
# Check if we have valid inputs
|
194 |
+
if not output_langs:
|
195 |
+
return typed_text, "", "", "", None, None, None
|
196 |
+
|
197 |
+
# Limit to 3 output languages
|
198 |
+
selected_langs = output_langs[:3]
|
199 |
+
|
200 |
+
# Get the input text either from typed text or by transcribing audio
|
201 |
+
input_text = typed_text
|
202 |
+
if not input_text and audio:
|
203 |
+
input_text = transcribe_audio_locally(audio)
|
204 |
+
|
205 |
+
if not input_text:
|
206 |
+
return "", "", "", "", None, None, None
|
207 |
+
|
208 |
+
# Get translations
|
209 |
+
translations_text = translate_text(input_text, input_lang, selected_langs)
|
210 |
+
|
211 |
+
# Extract clean translations
|
212 |
+
translation_results = extract_translations(translations_text, selected_langs)
|
213 |
+
|
214 |
+
# Generate speech for each valid translation
|
215 |
+
audio_paths = []
|
216 |
+
for i, (trans, lang) in enumerate(zip(translation_results, selected_langs)):
|
217 |
+
if trans:
|
218 |
+
audio_path = synthesize_speech(trans, lang)
|
219 |
+
audio_paths.append(audio_path)
|
220 |
+
else:
|
221 |
+
audio_paths.append(None)
|
222 |
+
|
223 |
+
# Ensure we have exactly 3 audio paths
|
224 |
+
while len(audio_paths) < 3:
|
225 |
+
audio_paths.append(None)
|
226 |
+
|
227 |
+
# Return results in the expected format
|
228 |
+
return [input_text] + translation_results + audio_paths
|
229 |
+
|
230 |
+
with gr.Blocks() as demo:
|
231 |
+
gr.Markdown("## 🌍 Multilingual Translator with Speech Support")
|
232 |
+
|
233 |
+
with gr.Row():
|
234 |
+
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, value="English", label="Input Language")
|
235 |
+
output_langs = gr.CheckboxGroup(choices=SUPPORTED_LANGUAGES, label="Output Languages (select up to 3)")
|
236 |
+
|
237 |
+
with gr.Row():
|
238 |
+
audio_input = gr.Audio(type="filepath", label="Speak Your Input (upload or record)")
|
239 |
+
text_input = gr.Textbox(label="Or Type Text", elem_id="text_input")
|
240 |
+
|
241 |
+
transcribed_text = gr.Textbox(label="Transcribed Text (from audio)", interactive=False)
|
242 |
+
translated_outputs = [gr.Textbox(label=f"Translation {i+1}", interactive=False) for i in range(3)]
|
243 |
+
audio_outputs = [gr.Audio(label=f"Speech Output {i+1}") for i in range(3)]
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
translate_btn = gr.Button("Translate", elem_id="translate_btn")
|
247 |
+
clear_btn = gr.Button("Clear Memory")
|
248 |
+
|
249 |
+
# Handle audio input separately
|
250 |
+
def on_audio_change(audio):
|
251 |
+
if audio is None:
|
252 |
+
return ""
|
253 |
+
transcribed = process_speech_to_text(audio)
|
254 |
+
return transcribed
|
255 |
+
|
256 |
+
# Update text input when audio is processed
|
257 |
+
audio_input.change(
|
258 |
+
on_audio_change,
|
259 |
+
inputs=[audio_input],
|
260 |
+
#outputs=[text_input]
|
261 |
+
outputs=[transcribed_text]
|
262 |
+
)
|
263 |
+
|
264 |
+
# Enable Enter key to submit
|
265 |
+
text_input.submit(
|
266 |
+
perform_translation,
|
267 |
+
inputs=[audio_input, text_input, input_lang, output_langs],
|
268 |
+
outputs=[transcribed_text] + translated_outputs + audio_outputs
|
269 |
+
)
|
270 |
+
|
271 |
+
translate_btn.click(
|
272 |
+
perform_translation,
|
273 |
+
inputs=[audio_input, text_input, input_lang, output_langs],
|
274 |
+
outputs=[transcribed_text] + translated_outputs + audio_outputs
|
275 |
+
)
|
276 |
+
|
277 |
+
clear_btn.click(
|
278 |
+
clear_memory,
|
279 |
+
inputs=[],
|
280 |
+
outputs=[transcribed_text] + translated_outputs + audio_outputs
|
281 |
+
)
|
282 |
+
|
283 |
+
demo.launch()
|
apt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
espeak
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
groq
|
4 |
+
soundfile
|
5 |
+
transformers
|
6 |
+
openai-whisper
|
7 |
+
gTTS
|