import gradio as gr import os import tempfile import whisper import re from groq import Groq from gtts import gTTS # Load the local Whisper model for speech-to-text whisper_model = whisper.load_model("base") # Instantiate Groq client with API key groq_client = Groq(api_key=os.getenv("GROQ_API_KEY", "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")) # Supported languages (separated Malaysian Malay & Indonesian Malay) SUPPORTED_LANGUAGES = [ "English", "Chinese", "Thai", "Malaysian Malay", "Indonesian Malay", # Split into two entries "Korean", "Japanese", "Spanish", "German", "Hindi", "Urdu", "French", "Russian", "Tagalog", "Arabic", "Myanmar", "Vietnamese" ] LANGUAGE_CODES = { "English": "en", "Chinese": "zh", "Thai": "th", "Malaysian Malay": "ms", # Bahasa Malaysia (ms) "Indonesian Malay": "id", # Bahasa Indonesia (id) "Korean": "ko", "Japanese": "ja", "Spanish": "es", "German": "de", "Hindi": "hi", "Urdu": "ur", "French": "fr", "Russian": "ru", "Tagalog": "tl", "Arabic": "ar", "Myanmar": "my", "Vietnamese": "vi" } # Available LLM models AVAILABLE_MODELS = { "DeepSeek-R1 llama 70B": "deepseek-r1-distill-llama-70b", "Qwen 32B": "qwen-qwq-32b", "Llama-3.3 70B": "llama-3.3-70b-versatile", "Llama-4 Scout 17B":"meta-llama/llama-4-scout-17b-16e-instruct", "Llama-4 Maverick 17B": "meta-llama/llama-4-maverick-17b-128e-instruct" } def transcribe_audio_locally(audio): """Transcribe audio using local Whisper model""" if audio is None: return "" try: audio_path = audio["name"] if isinstance(audio, dict) and "name" in audio else audio result = whisper_model.transcribe(audio_path) return result["text"] except Exception as e: print(f"Error transcribing audio locally: {e}") return f"Error transcribing audio: {str(e)}" def translate_text(input_text, input_lang, output_langs, model_name): """Translate text using Groq's API with the selected model""" if not input_text or not output_langs: return [] try: # Get the actual model ID from our dictionary model_id = AVAILABLE_MODELS.get(model_name, "meta-llama/llama-4-maverick-17b-128e-instruct") # Using a more direct instruction to avoid exposing the thinking process system_prompt = """You are a translation assistant that provides direct, accurate translations. Do NOT include any thinking, reasoning, or explanations in your response. Do NOT use phrases like 'In [language]:', 'Translation:' or similar prefixes. Do NOT use any special formatting like asterisks (**) or other markdown. Always respond with ONLY the exact translation text itself.""" user_prompt = f"Translate this {input_lang} text: '{input_text}' into the following languages: {', '.join(output_langs)}. Provide each translation on a separate line with the language name as a prefix. Do not use any special formatting or markdown." response = groq_client.chat.completions.create( model=model_id, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] ) translation_text = response.choices[0].message.content.strip() # Remove any "thinking" patterns or COT that might have leaked through # Remove text between tags if they exist translation_text = re.sub(r'.*?', '', translation_text, flags=re.DOTALL) # Remove any asterisks translation_text = translation_text.replace('**', '') # Remove any line starting with common thinking patterns thinking_patterns = [ r'^\s*Let me think.*$', r'^\s*I need to.*$', r'^\s*First,.*$', r'^\s*Okay, so.*$', r'^\s*Hmm,.*$', r'^\s*Let\'s break this down.*$' ] for pattern in thinking_patterns: translation_text = re.sub(pattern, '', translation_text, flags=re.MULTILINE) return translation_text except Exception as e: print(f"Error translating text: {e}") return f"Error: {str(e)}" def synthesize_speech(text, lang): """Generate speech from text""" if not text: return None try: lang_code = LANGUAGE_CODES.get(lang, "en") tts = gTTS(text=text, lang=lang_code) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: tts.save(fp.name) return fp.name except Exception as e: print(f"Error synthesizing speech: {e}") return None def clear_memory(): """Clear all fields""" return "", "", "", "", None, None, None def process_speech_to_text(audio): """Process audio and return the transcribed text""" if not audio: return "" transcribed_text = transcribe_audio_locally(audio) return transcribed_text def clean_translation_output(text): """Clean translation output to remove any thinking or processing text""" if not text: return "" # Remove any meta-content or thinking text = re.sub(r'.*?', '', text, flags=re.DOTALL) # Remove asterisks from the text text = text.replace('**', '') text = text.replace('*', '') # Remove lines that appear to be thinking/reasoning lines = text.split('\n') cleaned_lines = [] for line in lines: # Skip lines that look like thinking if re.search(r'(^I need to|^Let me|^First|^Okay|^Hmm|^I will|^I am thinking|^I should)', line, re.IGNORECASE): continue # Keep translations with language names if ':' in line and any(lang.lower() in line.lower() for lang in SUPPORTED_LANGUAGES): cleaned_lines.append(line) # Or keep direct translations without prefixes if they don't look like thinking elif line.strip() and not re.search(r'(thinking|translating|understand|process)', line, re.IGNORECASE): cleaned_lines.append(line) return '\n'.join(cleaned_lines) def extract_translations(translations_text, output_langs): """Extract clean translations from the model output""" if not translations_text or not output_langs: return [""] * 3 # Clean the translations text first clean_text = clean_translation_output(translations_text) # Try to match language patterns translation_results = [] # First try to find language-labeled translations for lang in output_langs: pattern = rf'{lang}[\s]*:[\s]*(.*?)(?=\n\s*[A-Z]|$)' match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL) if match: translation_results.append(match.group(1).strip()) # If we couldn't find labeled translations, just split by lines if not translation_results and '\n' in clean_text: lines = [line.strip() for line in clean_text.split('\n') if line.strip()] for line in lines: # Check if this line has a language prefix if ':' in line: parts = line.split(':', 1) if len(parts) == 2: translation_results.append(parts[1].strip()) else: # Just add the line as is if it seems like a translation translation_results.append(line) elif not translation_results: # If no newlines, just use the whole text translation_results.append(clean_text) # Ensure we have exactly 3 results while len(translation_results) < 3: translation_results.append("") return translation_results[:3] def perform_translation(audio, typed_text, input_lang, output_langs, model_name): """Main function to handle translation process""" # Check if we have valid inputs if not output_langs: return typed_text, "", "", "", None, None, None # Limit to 3 output languages selected_langs = output_langs[:3] # Get the input text either from typed text or by transcribing audio input_text = typed_text if not input_text and audio: input_text = transcribe_audio_locally(audio) if not input_text: return "", "", "", "", None, None, None # Get translations using the selected model translations_text = translate_text(input_text, input_lang, selected_langs, model_name) # Extract clean translations translation_results = extract_translations(translations_text, selected_langs) # Generate speech for each valid translation audio_paths = [] for i, (trans, lang) in enumerate(zip(translation_results, selected_langs)): if trans: audio_path = synthesize_speech(trans, lang) audio_paths.append(audio_path) else: audio_paths.append(None) # Ensure we have exactly 3 audio paths while len(audio_paths) < 3: audio_paths.append(None) # Return results in the expected format return [input_text] + translation_results + audio_paths with gr.Blocks() as demo: gr.Markdown("## 🌍 Multilingual Translator with Speech Support") with gr.Row(): input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, value="English", label="Input Language") output_langs = gr.CheckboxGroup(choices=SUPPORTED_LANGUAGES, label="Output Languages (select up to 3)") with gr.Row(): model_selector = gr.Dropdown( choices=list(AVAILABLE_MODELS.keys()), value="DeepSeek-R1 llama 70B", label="Translation Model" ) with gr.Row(): audio_input = gr.Audio(type="filepath", label="Speak Your Input (upload or record)") text_input = gr.Textbox(label="Or Type Text", elem_id="text_input") transcribed_text = gr.Textbox(label="Transcribed Text (from audio)", interactive=False) translated_outputs = [gr.Textbox(label=f"Translation {i+1}", interactive=False) for i in range(3)] audio_outputs = [gr.Audio(label=f"Speech Output {i+1}") for i in range(3)] with gr.Row(): translate_btn = gr.Button("Translate", elem_id="translate_btn") clear_btn = gr.Button("Clear Memory") # Handle audio input separately def on_audio_change(audio): if audio is None: return "" transcribed = process_speech_to_text(audio) return transcribed # Update text input when audio is processed audio_input.change( on_audio_change, inputs=[audio_input], outputs=[text_input] ) # Enable Enter key to submit text_input.submit( perform_translation, inputs=[audio_input, text_input, input_lang, output_langs, model_selector], outputs=[transcribed_text] + translated_outputs + audio_outputs ) translate_btn.click( perform_translation, inputs=[audio_input, text_input, input_lang, output_langs, model_selector], outputs=[transcribed_text] + translated_outputs + audio_outputs ) clear_btn.click( clear_memory, inputs=[], outputs=[transcribed_text] + translated_outputs + audio_outputs ) demo.launch()