Spaces:
Running
Running
Upload tool
Browse files- app.py +6 -0
- requirements.txt +4 -0
- tool.py +161 -0
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import launch_gradio_demo
|
2 |
+
from tool import SimpleTool
|
3 |
+
|
4 |
+
tool = SimpleTool()
|
5 |
+
|
6 |
+
launch_gradio_demo(tool)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bs4
|
2 |
+
requests
|
3 |
+
transformers
|
4 |
+
smolagents
|
tool.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import Tool
|
2 |
+
from typing import Any, Optional
|
3 |
+
|
4 |
+
class SimpleTool(Tool):
|
5 |
+
name = "analyze_content"
|
6 |
+
description = "Enhanced web content analyzer with multiple analysis modes."
|
7 |
+
inputs = {"input_text":{"type":"string","description":"URL or direct text to analyze."},"mode":{"type":"string","nullable":True,"description":"Analysis mode ('analyze', 'summarize', 'sentiment', 'topics')."}}
|
8 |
+
output_type = "string"
|
9 |
+
|
10 |
+
def forward(self, input_text: str, mode: str = "analyze") -> str:
|
11 |
+
"""Enhanced web content analyzer with multiple analysis modes.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
input_text: URL or direct text to analyze.
|
15 |
+
mode: Analysis mode ('analyze', 'summarize', 'sentiment', 'topics').
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
str: JSON-formatted analysis results
|
19 |
+
"""
|
20 |
+
import requests
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
import re
|
23 |
+
from transformers import pipeline
|
24 |
+
import json
|
25 |
+
|
26 |
+
try:
|
27 |
+
# Setup request headers
|
28 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'}
|
29 |
+
|
30 |
+
# Process input
|
31 |
+
if input_text.startswith(('http://', 'https://')):
|
32 |
+
response = requests.get(input_text, headers=headers, timeout=10)
|
33 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
34 |
+
|
35 |
+
# Clean page content
|
36 |
+
for tag in soup(['script', 'style', 'meta']):
|
37 |
+
tag.decompose()
|
38 |
+
|
39 |
+
title = soup.title.string if soup.title else "No title found"
|
40 |
+
content = soup.get_text()
|
41 |
+
else:
|
42 |
+
title = "Text Analysis"
|
43 |
+
content = input_text
|
44 |
+
|
45 |
+
# Clean text
|
46 |
+
clean_text = re.sub(r'\s+', ' ', content).strip()
|
47 |
+
|
48 |
+
if len(clean_text) < 100:
|
49 |
+
return json.dumps({
|
50 |
+
"status": "error",
|
51 |
+
"message": "Content too short for analysis (minimum 100 characters)"
|
52 |
+
})
|
53 |
+
|
54 |
+
# Initialize models
|
55 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
56 |
+
classifier = pipeline("text-classification",
|
57 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment")
|
58 |
+
|
59 |
+
# Basic stats
|
60 |
+
stats = {
|
61 |
+
"title": title,
|
62 |
+
"characters": len(clean_text),
|
63 |
+
"words": len(clean_text.split()),
|
64 |
+
"paragraphs": len([p for p in clean_text.split("\n") if p.strip()]),
|
65 |
+
"reading_time": f"{len(clean_text.split()) // 200} minutes"
|
66 |
+
}
|
67 |
+
|
68 |
+
result = {"status": "success", "stats": stats}
|
69 |
+
|
70 |
+
# Mode-specific processing
|
71 |
+
if mode == "analyze":
|
72 |
+
# Get summary
|
73 |
+
summary = summarizer(clean_text[:1024], max_length=100, min_length=30)[0]['summary_text']
|
74 |
+
|
75 |
+
# Get overall sentiment
|
76 |
+
sentiment = classifier(clean_text[:512])[0]
|
77 |
+
score = int(sentiment['label'][0])
|
78 |
+
sentiment_text = ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][score-1]
|
79 |
+
|
80 |
+
result.update({
|
81 |
+
"summary": summary,
|
82 |
+
"sentiment": {
|
83 |
+
"overall": sentiment_text,
|
84 |
+
"score": score,
|
85 |
+
"confidence": f"{score/5*100:.1f}%"
|
86 |
+
}
|
87 |
+
})
|
88 |
+
|
89 |
+
elif mode == "sentiment":
|
90 |
+
# Analyze paragraphs
|
91 |
+
paragraphs = [p for p in clean_text.split("\n") if len(p.strip()) > 50]
|
92 |
+
sentiments = []
|
93 |
+
|
94 |
+
for i, para in enumerate(paragraphs[:5]):
|
95 |
+
sent = classifier(para[:512])[0]
|
96 |
+
score = int(sent['label'][0])
|
97 |
+
sentiments.append({
|
98 |
+
"section": i + 1,
|
99 |
+
"text": para[:100] + "...",
|
100 |
+
"sentiment": ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][score-1],
|
101 |
+
"score": score
|
102 |
+
})
|
103 |
+
|
104 |
+
result.update({
|
105 |
+
"sentiment_analysis": {
|
106 |
+
"sections": sentiments,
|
107 |
+
"total_sections": len(sentiments)
|
108 |
+
}
|
109 |
+
})
|
110 |
+
|
111 |
+
elif mode == "summarize":
|
112 |
+
# Process in chunks
|
113 |
+
chunks = [clean_text[i:i+1024] for i in range(0, min(len(clean_text), 3072), 1024)]
|
114 |
+
summaries = []
|
115 |
+
|
116 |
+
for chunk in chunks:
|
117 |
+
if len(chunk) > 100:
|
118 |
+
summary = summarizer(chunk, max_length=100, min_length=30)[0]['summary_text']
|
119 |
+
summaries.append(summary)
|
120 |
+
|
121 |
+
result.update({
|
122 |
+
"summaries": summaries,
|
123 |
+
"chunks_analyzed": len(summaries)
|
124 |
+
})
|
125 |
+
|
126 |
+
elif mode == "topics":
|
127 |
+
# Basic topic categorization
|
128 |
+
categories = {
|
129 |
+
"Technology": r"tech|software|hardware|digital|computer|AI|data",
|
130 |
+
"Business": r"business|market|finance|economy|industry",
|
131 |
+
"Science": r"science|research|study|discovery",
|
132 |
+
"Health": r"health|medical|medicine|wellness",
|
133 |
+
"General": r"news|world|people|life"
|
134 |
+
}
|
135 |
+
|
136 |
+
topic_scores = {}
|
137 |
+
for topic, pattern in categories.items():
|
138 |
+
matches = len(re.findall(pattern, clean_text.lower()))
|
139 |
+
topic_scores[topic] = matches
|
140 |
+
|
141 |
+
result.update({
|
142 |
+
"topic_analysis": {
|
143 |
+
"detected_topics": topic_scores,
|
144 |
+
"primary_topic": max(topic_scores.items(), key=lambda x: x[1])[0]
|
145 |
+
}
|
146 |
+
})
|
147 |
+
|
148 |
+
return json.dumps(result, indent=2)
|
149 |
+
|
150 |
+
except requests.exceptions.RequestException as e:
|
151 |
+
return json.dumps({
|
152 |
+
"status": "error",
|
153 |
+
"message": f"Failed to fetch content: {str(e)}",
|
154 |
+
"type": "request_error"
|
155 |
+
})
|
156 |
+
except Exception as e:
|
157 |
+
return json.dumps({
|
158 |
+
"status": "error",
|
159 |
+
"message": f"Analysis failed: {str(e)}",
|
160 |
+
"type": "general_error"
|
161 |
+
})
|