File size: 756 Bytes
dee7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load the tokenizer and model
model_checkpoint = "google/mt5-small"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

def summarize(text):
    inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
    outputs = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

iface = gr.Interface(fn=summarize, inputs="text", outputs="text", title="Text Summarizer", description="Summarize any text using the mT5 model.")

iface.launch()