|
import os |
|
|
|
|
|
import gc |
|
from functools import partial |
|
import gradio as gr |
|
import torch |
|
from speechbrain.inference.interfaces import Pretrained, foreign_class |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
import librosa |
|
import whisper_timestamped as whisper |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
def clean_up_memory(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def recap_sentence(string): |
|
|
|
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device) |
|
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0) |
|
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True) |
|
return recap_result |
|
|
|
|
|
def return_prediction_w2v2_mic(mic=None, progress=gr.Progress(), device=device): |
|
if mic is not None: |
|
download_path = mic.split(".")[0] + ".txt" |
|
waveform, sr = librosa.load(mic, sr=16000) |
|
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) |
|
return "You must either provide a mic recording or a file" |
|
|
|
recap_result = "" |
|
prev_segment = "" |
|
prev_segment_len = 0 |
|
|
|
for k, segment in enumerate(w2v2_result): |
|
progress(0.75, desc=" Пост-процесирање на транскриптот") |
|
|
|
if prev_segment == "": |
|
recap_segment= recap_sentence(segment) |
|
else: |
|
prev_segment_len = len(prev_segment.split()) |
|
recap_segment = recap_sentence(prev_segment + " " + segment) |
|
|
|
recap_segment = recap_segment.split() |
|
recap_segment = recap_segment[prev_segment_len:] |
|
recap_segment = " ".join(recap_segment) |
|
prev_segment = segment[0] |
|
recap_result += recap_segment + " " |
|
|
|
|
|
for i, letter in enumerate(recap_result): |
|
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): |
|
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] |
|
|
|
clean_up_memory() |
|
|
|
progress(1.0, desc=" Крај на транскрипцијата") |
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
|
|
return recap_result, download_path |
|
|
|
|
|
def return_prediction_w2v2_file(file=None, progress=gr.Progress(), device=device): |
|
if file is not None: |
|
download_path = file.split(".")[0] + ".txt" |
|
waveform, sr = librosa.load(file, sr=16000) |
|
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) |
|
return "You must either provide a mic recording or a file" |
|
|
|
recap_result = "" |
|
prev_segment = "" |
|
prev_segment_len = 0 |
|
|
|
for k, segment in enumerate(w2v2_result): |
|
progress(0.75, desc=" Пост-процесирање на транскриптот") |
|
|
|
if prev_segment == "": |
|
recap_segment= recap_sentence(segment) |
|
else: |
|
prev_segment_len = len(prev_segment.split()) |
|
recap_segment = recap_sentence(prev_segment + " " + segment) |
|
|
|
recap_segment = recap_segment.split() |
|
recap_segment = recap_segment[prev_segment_len:] |
|
recap_segment = " ".join(recap_segment) |
|
prev_segment = segment[0] |
|
recap_result += recap_segment + " " |
|
|
|
|
|
for i, letter in enumerate(recap_result): |
|
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): |
|
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] |
|
|
|
clean_up_memory() |
|
|
|
progress(1.0, desc=" Крај на транскрипцијата") |
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
|
|
return recap_result, download_path |
|
|
|
|
|
|
|
return_prediction_w2v2_mic_with_device = partial(return_prediction_w2v2_mic, device=device) |
|
return_prediction_w2v2_file_with_device = partial(return_prediction_w2v2_file, device=device) |
|
|
|
|
|
|
|
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR") |
|
w2v2_classifier = w2v2_classifier.to(device) |
|
w2v2_classifier.eval() |
|
|
|
|
|
|
|
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian" |
|
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name) |
|
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16) |
|
recap_model.to(device) |
|
recap_model.eval() |
|
|
|
|
|
with gr.Blocks() as mic_transcribe_wav2vec2: |
|
def clear_outputs(): |
|
return {audio_input: None, output_text: "", download_file: None} |
|
|
|
with gr.Row(): |
|
audio_input = gr.Audio(sources="microphone", type="filepath", label="Record Audio") |
|
with gr.Row(): |
|
transcribe_button = gr.Button("Transcribe") |
|
clear_button = gr.Button("Clear") |
|
with gr.Row(): |
|
output_text = gr.Textbox(label="Transcription") |
|
with gr.Row(): |
|
download_file = gr.File(label="Зачувај го транскриптот", file_count="single") |
|
|
|
transcribe_button.click( |
|
fn=return_prediction_w2v2_mic_with_device, |
|
inputs=[audio_input], |
|
outputs=[output_text, download_file], |
|
) |
|
clear_button.click( |
|
fn=clear_outputs, |
|
inputs=[], |
|
outputs=[audio_input, output_text, download_file], |
|
) |
|
|
|
|
|
with gr.Blocks() as file_transcribe_wav2vec2: |
|
def clear_outputs(): |
|
return {audio_input: None, output_text: "", download_file: None} |
|
|
|
with gr.Row(): |
|
audio_input = gr.Audio(sources="upload", type="filepath", label="Record Audio") |
|
with gr.Row(): |
|
transcribe_button = gr.Button("Transcribe") |
|
clear_button = gr.Button("Clear") |
|
with gr.Row(): |
|
output_text = gr.Textbox(label="Transcription") |
|
with gr.Row(): |
|
download_file = gr.File(label="Зачувај го транскриптот", file_count="single") |
|
|
|
transcribe_button.click( |
|
fn=return_prediction_w2v2_file_with_device, |
|
inputs=[audio_input], |
|
outputs=[output_text, download_file], |
|
) |
|
clear_button.click( |
|
fn=clear_outputs, |
|
inputs=[], |
|
outputs=[audio_input, output_text, download_file], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
project_description = ''' |
|
<img src="https://i.imghippo.com/files/JXadQ1728417387.png" |
|
alt="Bookie logo" |
|
style="float: right; width: 130px; height: 110px; margin-left: 10px;" /> |
|
|
|
## Автори: |
|
1. **Дејан Порјазовски** |
|
2. **Илина Јакимовска** |
|
3. **Ордан Чукалиев** |
|
4. **Никола Стиков** |
|
|
|
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ. |
|
|
|
## Во тренирањето на овој модел се употребени податоци од: |
|
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. |
|
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум“](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. |
|
3. Аудио подкастот [„Обични луѓе“](https://obicniluge.mk/episodes/) на Илина Јакимовска |
|
4. Научните видеа од серијалот [„Наука за деца“](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/) |
|
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0) |
|
|
|
## Како да придонесете за подобрување на македонските модели за препознавање на говор? |
|
На следниот [линк](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice. |
|
''' |
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
background-color: #f0f0f0; /* Set your desired background color */ |
|
} |
|
|
|
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a { |
|
font-size: 15px !important; |
|
font-family: Arial, sans-serif !important; |
|
} |
|
|
|
.gradio-container { |
|
background-color: #f3f3f3 !important; |
|
} |
|
""" |
|
|
|
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120)) |
|
|
|
with transcriber_app: |
|
state = gr.State() |
|
gr.Markdown(project_description, elem_classes="custom-markdown") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.TabbedInterface( |
|
[mic_transcribe_wav2vec2, file_transcribe_wav2vec2], |
|
["Буки-w2v2 транскрипција од микрофон", "Буки-w2v2 транскрипција од фајл"], |
|
) |
|
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) |
|
|
|
transcriber_app.unload(return_prediction_whisper) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
transcriber_app.queue() |
|
transcriber_app.launch() |