mohammadhakimi commited on
Commit
c9baad3
·
verified ·
1 Parent(s): a574a80

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -10
app.py CHANGED
@@ -10,10 +10,9 @@ from langchain_huggingface.embeddings import HuggingFaceEmbeddings
10
  from sentence_transformers import SentenceTransformer
11
  import os
12
  import numpy as np
13
- from langchain.vectorstores import Pinecone
14
  from langchain.schema import Document
15
  from pinecone import Pinecone as PC
16
-
17
  # Initialize Pinecone
18
  PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
19
  PINECONE_INDEX = "arolchatbot" # e.g., "us-west1-gcp-free"
@@ -23,7 +22,7 @@ index = pc.Index(PINECONE_INDEX)
23
 
24
 
25
  embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
26
- vector_store = Pinecone(index, embeddings.embed_query, "text")
27
 
28
  # Model and Tokenizer
29
  model_name = "Meldashti/chatbot"
@@ -45,13 +44,6 @@ generator = pipeline(
45
  # LLM wrapper
46
  llm = HuggingFacePipeline(pipeline=generator)
47
 
48
-
49
- # Text splitting
50
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
51
- split_documents = text_splitter.split_documents(documents)
52
-
53
- # Vector store
54
- vector_store = FAISS.from_documents(split_documents, embeddings)
55
  retriever = vector_store.as_retriever(search_kwargs={"k": 5})
56
 
57
  # Retrieval QA Chain
 
10
  from sentence_transformers import SentenceTransformer
11
  import os
12
  import numpy as np
 
13
  from langchain.schema import Document
14
  from pinecone import Pinecone as PC
15
+ from langchain_pinecone import PineconeVectorStore
16
  # Initialize Pinecone
17
  PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
18
  PINECONE_INDEX = "arolchatbot" # e.g., "us-west1-gcp-free"
 
22
 
23
 
24
  embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
25
+ vector_store = PineconeVectorStore(index, embeddings, "text")
26
 
27
  # Model and Tokenizer
28
  model_name = "Meldashti/chatbot"
 
44
  # LLM wrapper
45
  llm = HuggingFacePipeline(pipeline=generator)
46
 
 
 
 
 
 
 
 
47
  retriever = vector_store.as_retriever(search_kwargs={"k": 5})
48
 
49
  # Retrieval QA Chain