Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,9 @@ from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import os
|
12 |
import numpy as np
|
13 |
-
from langchain.vectorstores import Pinecone
|
14 |
from langchain.schema import Document
|
15 |
from pinecone import Pinecone as PC
|
16 |
-
|
17 |
# Initialize Pinecone
|
18 |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
19 |
PINECONE_INDEX = "arolchatbot" # e.g., "us-west1-gcp-free"
|
@@ -23,7 +22,7 @@ index = pc.Index(PINECONE_INDEX)
|
|
23 |
|
24 |
|
25 |
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
|
26 |
-
vector_store =
|
27 |
|
28 |
# Model and Tokenizer
|
29 |
model_name = "Meldashti/chatbot"
|
@@ -45,13 +44,6 @@ generator = pipeline(
|
|
45 |
# LLM wrapper
|
46 |
llm = HuggingFacePipeline(pipeline=generator)
|
47 |
|
48 |
-
|
49 |
-
# Text splitting
|
50 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
51 |
-
split_documents = text_splitter.split_documents(documents)
|
52 |
-
|
53 |
-
# Vector store
|
54 |
-
vector_store = FAISS.from_documents(split_documents, embeddings)
|
55 |
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
56 |
|
57 |
# Retrieval QA Chain
|
|
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import os
|
12 |
import numpy as np
|
|
|
13 |
from langchain.schema import Document
|
14 |
from pinecone import Pinecone as PC
|
15 |
+
from langchain_pinecone import PineconeVectorStore
|
16 |
# Initialize Pinecone
|
17 |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
18 |
PINECONE_INDEX = "arolchatbot" # e.g., "us-west1-gcp-free"
|
|
|
22 |
|
23 |
|
24 |
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
|
25 |
+
vector_store = PineconeVectorStore(index, embeddings, "text")
|
26 |
|
27 |
# Model and Tokenizer
|
28 |
model_name = "Meldashti/chatbot"
|
|
|
44 |
# LLM wrapper
|
45 |
llm = HuggingFacePipeline(pipeline=generator)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
48 |
|
49 |
# Retrieval QA Chain
|