Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from peft import PeftModel
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.docstore.document import Document
|
6 |
from langchain_community.llms import HuggingFacePipeline
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
-
from langchain.
|
|
|
|
|
10 |
|
11 |
# Model and Tokenizer
|
12 |
model_name = "Meldashti/chatbot"
|
@@ -15,55 +15,64 @@ tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B")
|
|
15 |
|
16 |
# Merge PEFT weights with base model
|
17 |
model = PeftModel.from_pretrained(base_model, model_name)
|
18 |
-
model = model.merge_and_unload()
|
19 |
|
20 |
-
#
|
21 |
-
generator = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
llm = HuggingFacePipeline(pipeline=generator)
|
25 |
|
26 |
-
#
|
27 |
-
embeddings = HuggingFaceEmbeddings(model_name="
|
28 |
|
29 |
-
# Sample documents
|
30 |
documents = [
|
31 |
-
Document(page_content="
|
32 |
-
Document(page_content="
|
33 |
-
# Add more documents as needed
|
34 |
]
|
35 |
|
36 |
-
#
|
37 |
-
text_splitter = CharacterTextSplitter(chunk_size=
|
38 |
split_documents = text_splitter.split_documents(documents)
|
39 |
|
40 |
-
#
|
41 |
vector_store = FAISS.from_documents(split_documents, embeddings)
|
|
|
42 |
|
43 |
-
#
|
44 |
-
retriever = vector_store.as_retriever()
|
45 |
-
|
46 |
-
# Create Retrieval QA Chain
|
47 |
rag_chain = RetrievalQA.from_chain_type(
|
48 |
-
llm=llm,
|
49 |
-
chain_type="stuff",
|
50 |
retriever=retriever
|
51 |
)
|
52 |
|
53 |
-
#
|
54 |
def chat(message, history):
|
55 |
print(f"Received message: {message}")
|
56 |
try:
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
-
print(f"Error generating response: {e}")
|
62 |
-
return "
|
63 |
|
64 |
-
#
|
65 |
demo = gr.ChatInterface(chat, type="messages", autofocus=False)
|
66 |
|
67 |
-
# Launch
|
68 |
if __name__ == "__main__":
|
69 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from peft import PeftModel
|
|
|
|
|
4 |
from langchain_community.llms import HuggingFacePipeline
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
from langchain.docstore.document import Document
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
|
11 |
# Model and Tokenizer
|
12 |
model_name = "Meldashti/chatbot"
|
|
|
15 |
|
16 |
# Merge PEFT weights with base model
|
17 |
model = PeftModel.from_pretrained(base_model, model_name)
|
18 |
+
model = model.merge_and_unload()
|
19 |
|
20 |
+
# Simplified pipeline with minimal parameters
|
21 |
+
generator = pipeline(
|
22 |
+
"text-generation",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
max_new_tokens=50, # Very low to test responsiveness
|
26 |
+
do_sample=False
|
27 |
+
)
|
28 |
|
29 |
+
# LLM wrapper
|
30 |
llm = HuggingFacePipeline(pipeline=generator)
|
31 |
|
32 |
+
# Embeddings
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name="paraphrase-MiniLM-L3-v2")
|
34 |
|
35 |
+
# Sample documents (minimal)
|
36 |
documents = [
|
37 |
+
Document(page_content="Example document about food industry caps"),
|
38 |
+
Document(page_content="Information about manufacturing processes")
|
|
|
39 |
]
|
40 |
|
41 |
+
# Text splitting
|
42 |
+
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=20)
|
43 |
split_documents = text_splitter.split_documents(documents)
|
44 |
|
45 |
+
# Vector store
|
46 |
vector_store = FAISS.from_documents(split_documents, embeddings)
|
47 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 2})
|
48 |
|
49 |
+
# Retrieval QA Chain
|
|
|
|
|
|
|
50 |
rag_chain = RetrievalQA.from_chain_type(
|
51 |
+
llm=llm,
|
52 |
+
chain_type="stuff",
|
53 |
retriever=retriever
|
54 |
)
|
55 |
|
56 |
+
# Chat function with extensive logging
|
57 |
def chat(message, history):
|
58 |
print(f"Received message: {message}")
|
59 |
try:
|
60 |
+
# Add timeout mechanism
|
61 |
+
import timeout_decorator
|
62 |
+
|
63 |
+
@timeout_decorator.timeout(10) # 10 seconds timeout
|
64 |
+
def get_response():
|
65 |
+
response = rag_chain.invoke({"query": message})
|
66 |
+
return str(response['result'])
|
67 |
+
|
68 |
+
return get_response()
|
69 |
except Exception as e:
|
70 |
+
print(f"Error generating response: {type(e)}, {e}")
|
71 |
+
return f"An error occurred: {str(e)}"
|
72 |
|
73 |
+
# Gradio interface
|
74 |
demo = gr.ChatInterface(chat, type="messages", autofocus=False)
|
75 |
|
76 |
+
# Launch
|
77 |
if __name__ == "__main__":
|
78 |
+
demo.launch(debug=True)
|