import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from peft import PeftModel from langchain_community.llms import HuggingFacePipeline from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain.docstore.document import Document from langchain.chains import RetrievalQA # Model and Tokenizer model_name = "Meldashti/chatbot" base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-3B") tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B") # Merge PEFT weights with base model model = PeftModel.from_pretrained(base_model, model_name) model = model.merge_and_unload() # Simplified pipeline with minimal parameters generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=50, # Very low to test responsiveness do_sample=False ) # LLM wrapper llm = HuggingFacePipeline(pipeline=generator) # Embeddings embeddings = HuggingFaceEmbeddings(model_name="paraphrase-MiniLM-L3-v2") # Sample documents (minimal) documents = [ Document(page_content="Example document about food industry caps"), Document(page_content="Information about manufacturing processes") ] # Text splitting text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=20) split_documents = text_splitter.split_documents(documents) # Vector store vector_store = FAISS.from_documents(split_documents, embeddings) retriever = vector_store.as_retriever(search_kwargs={"k": 2}) # Retrieval QA Chain rag_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever ) # Chat function with extensive logging def chat(message, history): print(f"Received message: {message}") try: # Add timeout mechanism import timeout_decorator @timeout_decorator.timeout(10) # 10 seconds timeout def get_response(): response = rag_chain.invoke({"query": message}) return str(response['result']) return get_response() except Exception as e: print(f"Error generating response: {type(e)}, {e}") return f"An error occurred: {str(e)}" # Gradio interface demo = gr.ChatInterface(chat, type="messages", autofocus=False) # Launch if __name__ == "__main__": demo.launch(debug=True)