Spaces:
Running
Running
import os | |
import pandas as pd | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
import faiss | |
import numpy as np | |
import pickle | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import scipy.special | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from flask import Flask, request, jsonify | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Disable tokenizers parallelism to avoid fork-related deadlocks | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Paths for saving artifacts | |
MODEL_DIR = "./saved_models" | |
FALLBACK_MODEL_DIR = "/tmp/saved_models" | |
try: | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
logger.info(f"Using model directory: {MODEL_DIR}") | |
chosen_model_dir = MODEL_DIR | |
except Exception as e: | |
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.") | |
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True) | |
chosen_model_dir = FALLBACK_MODEL_DIR | |
# Update paths | |
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model") | |
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model") | |
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl") | |
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl") | |
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl") | |
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index") | |
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl") | |
COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl") | |
JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl") | |
# Global variables for precomputed data | |
tfidf_vectorizer = None | |
skill_tfidf = None | |
question_to_answer = None | |
faiss_index = None | |
answer_embeddings = None | |
course_similarity = None | |
job_similarity = None | |
# Improved dataset loading with fallback | |
def load_dataset(file_path, required_columns=[], additional_columns=['popularity', 'completion_rate'], fallback_data=None): | |
try: | |
df = pd.read_csv(file_path) | |
missing_required = [col for col in required_columns if col not in df.columns] | |
missing_additional = [col for col in additional_columns if col not in df.columns] | |
# Handle missing required columns | |
if missing_required: | |
logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.") | |
for col in missing_required: | |
df[col] = "" | |
# Handle missing additional columns (popularity, completion_rate, etc.) | |
if missing_additional: | |
logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.") | |
for col in missing_additional: | |
if col == 'popularity': | |
df[col] = 0.8 # Default value for popularity | |
elif col == 'completion_rate': | |
df[col] = 0.7 # Default value for completion_rate | |
else: | |
df[col] = 0.0 # Default for other additional columns | |
# Ensure 'level' column has valid values (not empty) | |
if 'level' in df.columns: | |
df['level'] = df['level'].apply(lambda x: 'Intermediate' if pd.isna(x) or x.strip() == "" else x) | |
else: | |
logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.") | |
df['level'] = 'Intermediate' | |
return df | |
except ValueError as ve: | |
logger.error(f"ValueError loading {file_path}: {ve}. Using fallback data.") | |
if fallback_data is not None: | |
logger.info(f"Using fallback data for {file_path}") | |
return pd.DataFrame(fallback_data) | |
return None | |
except Exception as e: | |
logger.error(f"Error loading {file_path}: {e}. Using fallback data.") | |
if fallback_data is not None: | |
logger.info(f"Using fallback data for {file_path}") | |
return pd.DataFrame(fallback_data) | |
return None | |
# Load datasets with fallbacks | |
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"], [], { | |
'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'], | |
'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question', | |
'Intermediate Python question', 'Basic Kubernetes question'], | |
'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer'] | |
}) | |
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"], ['popularity', 'completion_rate'], { | |
'skills': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'], | |
'course_title': ['Linux Admin', 'Git Mastery', 'Node.js Advanced', 'Python for Data', 'Kubernetes Basics'], | |
'Organization': ['Coursera', 'Udemy', 'Pluralsight', 'edX', 'Linux Foundation'], | |
'level': ['Intermediate', 'Intermediate', 'Advanced', 'Advanced', 'Intermediate'], | |
'popularity': [0.85, 0.9, 0.8, 0.95, 0.9], | |
'completion_rate': [0.65, 0.7, 0.6, 0.8, 0.75] | |
}) | |
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"], [], { | |
'job_title': ['DevOps Engineer', 'Cloud Architect', 'Software Engineer', 'Data Scientist', 'Security Analyst'], | |
'company_name': ['Tech Corp', 'Cloud Inc', 'Tech Solutions', 'Data Co', 'SecuriTech'], | |
'location': ['Remote', 'Islamabad', 'Karachi', 'Remote', 'Islamabad'], | |
'required_skills': ['Linux, Kubernetes', 'AWS, Kubernetes', 'Python, Node.js', 'Python, SQL', 'Cybersecurity, Linux'], | |
'job_description': ['DevOps role description', 'Cloud architecture position', 'Software engineering role', 'Data science position', 'Security analyst role'], | |
'level': ['Intermediate', 'Advanced', 'Intermediate', 'Intermediate', 'Intermediate'] | |
}) | |
# Validate questions_df | |
if questions_df is None or questions_df.empty: | |
logger.error("questions_df is empty or could not be loaded. Exiting.") | |
exit(1) | |
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]): | |
logger.error("questions_df is missing required columns. Exiting.") | |
exit(1) | |
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}") | |
# Load or Initialize Models with Fallback | |
def load_universal_model(): | |
default_model = "all-MiniLM-L6-v2" | |
try: | |
if os.path.exists(UNIVERSAL_MODEL_PATH): | |
logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}") | |
return SentenceTransformer(UNIVERSAL_MODEL_PATH) | |
else: | |
logger.info(f"Loading universal model: {default_model}") | |
model = SentenceTransformer(default_model) | |
model.save(UNIVERSAL_MODEL_PATH) | |
return model | |
except Exception as e: | |
logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.") | |
exit(1) | |
universal_model = load_universal_model() | |
if os.path.exists(DETECTOR_MODEL_PATH): | |
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH) | |
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH) | |
else: | |
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector") | |
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector") | |
# Load Precomputed Resources | |
def load_precomputed_resources(): | |
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity | |
if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]): | |
try: | |
with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f) | |
with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f) | |
with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f) | |
faiss_index = faiss.read_index(FAISS_INDEX_PATH) | |
with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f) | |
with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f) | |
with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f) | |
logger.info("Loaded precomputed resources successfully") | |
except Exception as e: | |
logger.error(f"Error loading precomputed resources: {e}") | |
precompute_resources() | |
else: | |
precompute_resources() | |
# Precompute Resources Offline (to be run separately) | |
def precompute_resources(): | |
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity | |
logger.info("Precomputing resources offline") | |
try: | |
tfidf_vectorizer = TfidfVectorizer(stop_words='english') | |
all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist() | |
tfidf_vectorizer.fit(all_texts) | |
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()} | |
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer'])) | |
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy() | |
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1]) | |
faiss_index.add(answer_embeddings) | |
# Precompute course similarities | |
course_skills = courses_df['skills'].fillna("").tolist() | |
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu") | |
skill_embeddings = universal_model.encode(questions_df['Skill'].unique().tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu") | |
course_similarity = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy() | |
# Precompute job similarities | |
job_skills = jobs_df['required_skills'].fillna("").tolist() | |
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu") | |
job_similarity = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy() | |
# Save precomputed resources | |
with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f) | |
with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f) | |
with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f) | |
faiss.write_index(faiss_index, FAISS_INDEX_PATH) | |
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f) | |
with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f) | |
with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f) | |
universal_model.save(UNIVERSAL_MODEL_PATH) | |
logger.info(f"Precomputed resources saved to {chosen_model_dir}") | |
except Exception as e: | |
logger.error(f"Error during precomputation: {e}") | |
raise | |
# Evaluation with precomputed data | |
def evaluate_response(args): | |
try: | |
skill, user_answer, question_idx = args | |
if not user_answer: | |
return skill, 0.0, False | |
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512) | |
with torch.no_grad(): | |
logits = detector_model(**inputs).logits | |
probs = scipy.special.softmax(logits, axis=1).tolist()[0] | |
is_ai = probs[1] > 0.5 | |
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0] | |
expected_embedding = torch.tensor(answer_embeddings[question_idx]) | |
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100 | |
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0] | |
skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf)) | |
relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10) | |
score *= max(0.5, min(1.0, relevance)) | |
return skill, round(max(0, score), 2), is_ai | |
except Exception as e: | |
logger.error(f"Evaluation error for {skill}: {e}") | |
return skill, 0.0, False | |
# Course recommendation with precomputed similarity | |
def recommend_courses(skills_to_improve, user_level, upgrade=False): | |
try: | |
if not skills_to_improve or courses_df.empty: | |
logger.info("No skills to improve or courses_df is empty.") | |
return [] | |
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()] | |
if not skill_indices: | |
logger.info("No matching skill indices found.") | |
return [] | |
similarities = course_similarity[skill_indices] | |
# Use default arrays to avoid KeyError | |
popularity = courses_df['popularity'].values if 'popularity' in courses_df else np.full(len(courses_df), 0.8) | |
completion_rate = courses_df['completion_rate'].values if 'completion_rate' in courses_df else np.full(len(courses_df), 0.7) | |
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate | |
target_level = 'Advanced' if upgrade else user_level | |
idx = np.argsort(-total_scores)[:5] | |
candidates = courses_df.iloc[idx] | |
# Filter by level, but fallback to all courses if none match | |
filtered_candidates = candidates[candidates['level'].str.contains(target_level, case=False, na=False)] | |
if filtered_candidates.empty: | |
logger.warning(f"No courses found for level {target_level}. Returning top courses regardless of level.") | |
filtered_candidates = candidates | |
return filtered_candidates[['course_title', 'Organization']].values.tolist()[:3] | |
except Exception as e: | |
logger.error(f"Course recommendation error: {e}") | |
return [] | |
# Job recommendation with precomputed similarity | |
def recommend_jobs(user_skills, user_level): | |
try: | |
if jobs_df.empty: | |
return [] | |
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()] | |
if not skill_indices: | |
return [] | |
similarities = job_similarity[skill_indices] | |
total_scores = 0.5 * np.max(similarities, axis=0) | |
if 'level' not in jobs_df.columns: | |
jobs_df['level'] = 'Intermediate' | |
level_col = jobs_df['level'].astype(str) | |
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2} | |
user_level_num = level_map.get(user_level, 1) | |
level_scores = level_col.apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2) | |
location_pref = jobs_df.get('location', pd.Series(['Remote'] * len(jobs_df))).apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7) | |
total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref | |
top_job_indices = np.argsort(-total_job_scores)[:5] | |
return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'], | |
jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices] | |
except Exception as e: | |
logger.error(f"Job recommendation error: {e}") | |
return [] | |
# Flask application setup | |
app = Flask(__name__) | |
def health_check(): | |
return jsonify({"status": "active", "model_dir": chosen_model_dir}) | |
def assess_skills(): | |
try: | |
data = request.get_json() | |
if not data or 'skills' not in data or 'answers' not in data: | |
return jsonify({"error": "Missing required fields"}), 400 | |
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)] | |
answers = [a.strip() for a in data['answers'] if isinstance(a, str)] | |
user_level = data.get('user_level', 'Intermediate').strip() | |
if len(answers) != len(user_skills): | |
return jsonify({"error": "Answers count must match skills count"}), 400 | |
load_precomputed_resources() # Load precomputed resources before processing | |
user_questions = [] | |
for skill in user_skills: | |
skill_questions = questions_df[questions_df['Skill'] == skill] | |
if not skill_questions.empty: | |
user_questions.append(skill_questions.sample(1).iloc[0]) | |
else: | |
user_questions.append({ | |
'Skill': skill, | |
'Question': f"What are the best practices for using {skill} in a production environment?", | |
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures." | |
}) | |
user_questions = pd.DataFrame(user_questions).reset_index(drop=True) | |
user_responses = [] | |
for idx, row in user_questions.iterrows(): | |
answer = answers[idx] | |
if not answer or answer.lower() == 'skip': | |
user_responses.append((row['Skill'], None, None)) | |
else: | |
question_idx = questions_df.index[questions_df['Question'] == row['Question']][0] | |
user_responses.append((row['Skill'], answer, question_idx)) | |
results = [evaluate_response(response) for response in user_responses] | |
user_scores = {} | |
ai_flags = {} | |
scores_list = [] | |
skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code] | |
for skill, score, is_ai in results: | |
if skill in user_scores: | |
user_scores[skill] = max(user_scores[skill], score) | |
ai_flags[skill] = ai_flags[skill] or is_ai | |
else: | |
user_scores[skill] = score | |
ai_flags[skill] = is_ai | |
scores_list.append(score) | |
mean_score = np.mean(scores_list) if scores_list else 50 | |
dynamic_threshold = max(40, mean_score) | |
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold] | |
courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills) | |
jobs = recommend_jobs(user_skills, user_level) | |
return jsonify({ | |
"assessment_results": { | |
"skills": [ | |
{ | |
"skill": skill, | |
"progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}", | |
"score": f"{score:.2f} %", | |
"origin": "AI-Generated" if is_ai else "Human-Written" | |
} for skill, score, is_ai in results | |
], | |
"mean_score": mean_score, | |
"dynamic_threshold": dynamic_threshold, | |
"weak_skills": weak_skills, | |
"skipped_questions": skipped_questions | |
}, | |
"recommended_courses": courses[:3], | |
"recommended_jobs": jobs[:5] | |
}) | |
except Exception as e: | |
logger.error(f"Assessment error: {e}") | |
return jsonify({"error": "Internal server error"}), 500 | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=7860, threaded=True) |