Muhusystem commited on
Commit
b64070e
·
1 Parent(s): b6556e2

Add Gradio app and requirements

Browse files
.ipynb_checkpoints/app-checkpoint.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from inference import load_model, classify_text
3
+
4
+ app = Flask(__name__)
5
+
6
+ # 加载模型
7
+ model, tokenizer = load_model()
8
+
9
+ @app.route('/predict', methods=['POST'])
10
+ def predict():
11
+ data = request.json
12
+ text = data.get("text", "")
13
+ if not text:
14
+ return jsonify({"error": "No text provided"}), 400
15
+ # 进行推理
16
+ prediction = classify_text(text, model, tokenizer)
17
+ return jsonify({"result": prediction})
18
+
19
+ if __name__ == '__main__':
20
+ app.run(debug=True)
.ipynb_checkpoints/requirements-checkpoint.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ flask
2
+ transformers
3
+ torch
4
+ gunicorn
app.py CHANGED
@@ -1,45 +1,78 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModel
4
  from PIL import Image
 
 
5
 
6
- # 加载自定义的多模态模型
7
- model_name = "Muhusjf/ViT-GPT2-multimodal-model"
 
 
 
 
 
8
 
9
- # 加载分词器和特征提取器
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
 
 
 
 
 
 
 
12
 
13
  # 加载模型
14
- model = AutoModel.from_pretrained(model_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # 自定义多模态推理函数
17
- def multimodal_pipeline(image, text):
18
- # 图像特征提取
 
19
  image_features = feature_extractor(images=image, return_tensors="pt")
20
-
21
- # 文本编码
22
- text_inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
23
 
24
- # 获取文本和图像特征
25
- with torch.no_grad():
26
- text_outputs = model(**text_inputs)
27
- image_outputs = model(**image_features)
 
 
 
 
 
 
 
 
28
 
29
- # 简单融合特征(可以根据需要实现更复杂的融合策略)
30
- fused_features = torch.cat((text_outputs.last_hidden_state[:, -1, :], image_outputs.last_hidden_state[:, 0, :]), dim=1)
 
 
 
31
 
32
- # 示例分类结果
33
- result = "Positive" if torch.mean(fused_features) > 0 else "Negative"
34
- return result
35
 
36
  # 创建 Gradio 界面
37
- iface = gr.Interface(
38
- fn=multimodal_pipeline,
39
- inputs=["image", "text"],
40
- outputs="text",
41
- title="Multi-modal Sentiment Analysis"
42
- )
43
-
44
- # 启动 Gradio 应用
45
  iface.launch()
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import GPT2Model, ViTModel, GPT2Tokenizer, ViTFeatureExtractor
4
  from PIL import Image
5
+ import requests
6
+ import os
7
 
8
+ # 定义多模态模型
9
+ class MultiModalModel(torch.nn.Module):
10
+ def __init__(self, gpt2_model_name="gpt2", vit_model_name="google/vit-base-patch16-224-in21k"):
11
+ super(MultiModalModel, self).__init__()
12
+ self.gpt2 = GPT2Model.from_pretrained(gpt2_model_name)
13
+ self.vit = ViTModel.from_pretrained(vit_model_name)
14
+ self.classifier = torch.nn.Linear(self.gpt2.config.hidden_size + self.vit.config.hidden_size, 2)
15
 
16
+ def forward(self, input_ids, attention_mask, pixel_values):
17
+ gpt2_outputs = self.gpt2(input_ids=input_ids, attention_mask=attention_mask)
18
+ text_features = gpt2_outputs.last_hidden_state[:, -1, :]
19
+
20
+ vit_outputs = self.vit(pixel_values=pixel_values)
21
+ image_features = vit_outputs.last_hidden_state[:, 0, :]
22
+
23
+ fused_features = torch.cat((text_features, image_features), dim=1)
24
+ logits = self.classifier(fused_features)
25
+ return logits
26
 
27
  # 加载模型
28
+ def load_model():
29
+ model_name = "Muhusjf/ViT-GPT2-multimodal-model"
30
+ model = MultiModalModel()
31
+ # 下载模型权重
32
+ model_url = f"https://huggingface.co/{model_name}/resolve/main/pytorch_model.bin"
33
+ model_path = "./pytorch_model.bin"
34
+ if not os.path.exists(model_path):
35
+ response = requests.get(model_url)
36
+ with open(model_path, "wb") as f:
37
+ f.write(response.content)
38
+ # 加载权重
39
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
40
+ model.eval()
41
+ return model
42
+
43
+ # 初始化模型和加载器
44
+ model = load_model()
45
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
46
+ tokenizer.pad_token = tokenizer.eos_token
47
+ feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
48
 
49
+ # 定义推理函数
50
+ def predict(image, text):
51
+ # 处理图像
52
+ image = Image.fromarray(image)
53
  image_features = feature_extractor(images=image, return_tensors="pt")
 
 
 
54
 
55
+ # 处理文本
56
+ inputs = tokenizer.encode_plus(
57
+ f"Question: {text} Answer:",
58
+ return_tensors="pt",
59
+ max_length=128,
60
+ truncation=True,
61
+ padding="max_length"
62
+ )
63
+
64
+ input_ids = inputs["input_ids"]
65
+ attention_mask = inputs["attention_mask"]
66
+ pixel_values = image_features["pixel_values"]
67
 
68
+ # 推理
69
+ with torch.no_grad():
70
+ logits = model(input_ids, attention_mask, pixel_values)
71
+ prediction = torch.argmax(logits, dim=1).item()
72
+ label = "yes" if prediction == 1 else "no"
73
 
74
+ return label
 
 
75
 
76
  # 创建 Gradio 界面
77
+ iface = gr.Interface(fn=predict, inputs=["image", "text"], outputs="text", title="Multi-modal Inference")
 
 
 
 
 
 
 
78
  iface.launch()
requirements.txt CHANGED
@@ -2,3 +2,4 @@ torch
2
  transformers
3
  gradio
4
  pillow
 
 
2
  transformers
3
  gradio
4
  pillow
5
+ requests