import gradio as gr from transformers import pipeline # Load models emotion_model = pipeline("text-classification", model="bert-base-uncased") microbiome_model = pipeline("text-generation", model="microsoft/BioGPT-Large") retina_model = pipeline("image-classification", model="microsoft/resnet-50") # Define functions def diagnose_emotion(text): return emotion_model(text) def analyze_microbiome(symptoms): return microbiome_model(symptoms) def analyze_retina(image): return retina_model(image) # Gradio UI with gr.Blocks() as app: gr.Markdown("# Diagnosify-AI - AI Medical Assistant") text_input = gr.Textbox(label="Enter Symptoms") image_input = gr.Image(type="pil", label="Upload Retina Scan") btn1 = gr.Button("Diagnose Emotion-based Disease") btn2 = gr.Button("Analyze Gut Health") btn3 = gr.Button("Detect Retinal Disease") output1 = gr.Textbox(label="Diagnosis") output2 = gr.Textbox(label="Microbiome Analysis") output3 = gr.Label(label="Retinal Disease Prediction") btn1.click(diagnose_emotion, inputs=text_input, outputs=output1) btn2.click(analyze_microbiome, inputs=text_input, outputs=output2) btn3.click(analyze_retina, inputs=image_input, outputs=output3) # Launch the app app.launch()